Sugar coating is, in fact, important
Like people, whether they want to or not, cells need to interact with others around them. One way people interact is through the way they dress. Indeed, we often are judged by the clothes we wear. Cells are "clothed" in a specialised sugar layer known as the glycocalyx in which specific sugar structures are displayed on proteins and lipids. Based on this outer clothing layer, the cell is recognised by both friend and foe.
In this symposium, we will learn about new ways to identify, locate and quantitate the glycans present on different cells under specific conditions. We also will hear how we can dress cells for success through modification of their surface structures. In another section, we will learn how pathogens can recognize and invade cells through specific glycocalyx structures.
We also will hear several accounts of how cancer progression can be mediated through overexpression of glycans such as sialic acid and heparan. Apparently, as with people, inhibitions can be dampened by exuberance in cellular dressing. Learn about this and more at our symposium.
Keywords: glycosylation, glycocalyx, cellular interfaces, cancer, immunity, infection
Who should attend: anyone who is interested in understanding how cells function and interact with their environment through their surface glycan coat and anyone interested in cool new ways to modulate those interactions through carbohydrate chemistry and enzymology
Theme song (at least for the mucinophiles): "Born to Run" by Bruce Springsteen
This session is powered by interdisciplinary science with a sweet touch.
Talks
- Nanoscale physical biology of the cellular glycocalyx — Matthew J. Paszek, Cornell University
- MALDI imaging mass spectrometry mapping of the glycocalyx — Richard R. Drake, Medical University of South Carolina
- Genetic and small molecule strategies to edit the glycocalyx — Sriram Neelamegham, State University of New York at Buffalo
- Enzymatic removal of cell surface antigens as a route towards universal O type blood and organs — Stephen Withers, University of British Columbia
- Hypersialylation of tumor cells promotes pancreatic cancer progression — Susan Bellis, University of Alabama at Birmingham
- Receptor N-glycosylation links metabolism with signaling — James Dennis, Lunenfeld Tanenbaum Research Institute
- Modeling the mucinous glycocalyx to unravel receptor pattern recognition by influenza A viruses — Kamil Godula, University of California, San Diego
- Cell surface glycan engineering reveals that matriglycan alone can recapitulate dystroglycan binding and function — Geert-Jan Boons, University of Georgia
- The glycocalyx in tumor progression and metastasis — Valerie Weaver, University of California, San Francisco
- The heparanase/syndecan-1 axis in cancer progression — Ralph D. Sanderson, University of Alabama at Birmingham
- Reprogramming T cells to target glycans and overcome glycan-mediated immunosuppression for cancer therapy — Avery Posey, University of Pennsylvania
- Orchestrated intragranular restructuring of mucins during secretory granule maturation — Kelly Ten Hagen, National Institute of Dental and Craniofacial Research
Learn more
Check out all ten thematic symposia planned for the 2022 ASBMB annual meeting:
Enjoy reading ASBMB Today?
Become a member to receive the print edition four times a year and the digital edition monthly.
Learn moreFeatured jobs
from the ASBMB career center
Get the latest from ASBMB Today
Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.
Latest in Science
Science highlights or most popular articles

Decoding how bacteria flip host’s molecular switches
Kim Orth will receive the Earl and Thressa Stadtman Distinguished Scientists Award at the ASBMB Annual Meeting, March 7–10, just outside of Washington, D.C.

Defining JNKs: Targets for drug discovery
Roger Davis will receive the Bert and Natalie Vallee Award in Biomedical Science at the ASBMB Annual Meeting, March 7–10, just outside of Washington, D.C.

Building better tools to decipher the lipidome
Chemical engineer–turned–biophysicist Matthew Mitsche uses curiosity, coding and creativity to tackle lipid biology, uncovering PNPLA3’s role in fatty liver disease and advancing mass spectrometry tools for studying complex lipid systems.

Redefining lipid biology from droplets to ferroptosis
James Olzmann will receive the ASBMB Avanti Award in Lipids at the ASBMB Annual Meeting, March 7–10, just outside of Washington, D.C.

Women’s health cannot leave rare diseases behind
A physician living with lymphangioleiomyomatosis and a basic scientist explain why patient-driven, trial-ready research is essential to turning momentum into meaningful progress.

Life in four dimensions: When biology outpaces the brain
Nobel laureate Eric Betzig will discuss his research on information transfer in biology from proteins to organisms at the 2026 ASBMB Annual Meeting.