Profile

Unraveling cancer’s spaghetti proteins

MOSAIC scholar studies intrinsically disordered proteins to develop cancer therapies
Vanshika Patel
Aug. 13, 2025

“I call them spaghetti noodles,” because they lack structure and are highly flexible, Katie Dunleavy said of intrinsically disorder proteins, or IDPs, her chosen field of study. She studied IDPs in more depth during her Ph.D. at the University of Florida, focusing on their conformational dynamics and hydration properties using a yeast protein as a model system.

Katie Dunleavy
Katie Dunleavy

Now a postdoctoral fellow at the University of Minnesota and former American Society for Biochemistry and Molecular Biology Maximizing Opportunities for Scientific and Academic Independent Careers, or MOSAIC, scholar, Dunleavy is studying how the IDP transcription factor c-MYC interacts with Aurora kinase A, or AURKA. c-MYC is expressed in over 70% of human cancers, making its interactions a vital focus for potential cancer therapies. Meanwhile, AURKA is a binding partner that may stabilize c-MYC.

Although AURKA’s role in stabilizing c-MYC is known, the precise structure and mechanism behind this stabilization remain unclear. This lack of understanding makes it difficult to design inhibitors that could disrupt the interaction and restore the normal protein turnover. Through a process called ubiquitination, the small protein ubiquitin tags other proteins, such as c-MYC, for degradation. To investigate how AURKA alters c-MYC’s ubiquitination process, Dunleavy is employing advanced biophysical techniques.

To investigate how AURKA affects the degradation of c-MYC, Dunleavy uses several biophysical techniques. For example, she uses continuous-wave electron paramagnetic resonance, or CW–EPR, to track protein movement in real time. She also applies X-ray crystallography and cryo-electron microscopy (cryo-EM) to map the structure of the c-MYC–AURKA complex and examine how their interaction may prevent c-MYC from being broken down. Ubiquitination assays further allow her to study how c-MYC is modified in the presence of AURKA. Together, these methods help her explore the mechanisms by which AURKA stabilizes c-MYC and interferes with its degradation.

“The hypothesis is that (when AURKA binds to c-MYC), the bound complex can’t be properly ubiquitinated nor sent for proper degradation of the protein,” Dunleavy said.

While researchers have known that AURKA binds to and stabilizes c-MYC, the full implications of that interaction are still coming into focus. “In a broader sense, this means the mechanism of stabilization of c-MYC by AURKA in cancerous conditions in general is not known,” she said.

Dunleavy is especially intrigued by what sets this project apart from more conventional studies of kinases. “What I find so cool about this story is that it is not a traditional kinase story,” she said. AURKA doesn’t modify c-MYC — it binds to c-Myc and protects it from degradation.

Because c-MYC is an intrinsically disordered protein, or IDP, it lacks well-defined binding pockets, making it a challenging drug target. Dunleavy plans to launch her independent research focused on defining the structure of the MYC–AURKA complexes and how ubiquitination alters their interaction. Her work could help build a structural and mechanistic roadmap — and inform strategies for disrupting this interaction. Once considered “undruggable,” IDPs like c-MYC may now be viable targets for cancer therapies. Receiving the MOSAIC award inspired Dunleavy, a first-generation college graduate, to give back.

“I was drawn to the MOSAIC program since I have a passion for mentorship and helping the underrepresented, including students who come from similar situations (as me) that don’t have a background (in science) or

don’t know that research exists,” Dunleavy said. “It has empowered me to grow my ambitions. I want to help inspire others through mentorship to be an available outlet for those pursuing this career.”

Enjoy reading ASBMB Today?

Become a member to receive the print edition four times a year and the digital edition monthly.

Learn more
Vanshika Patel

Vanshika Patel is a Ph.D. candidate in the pharmaceutical sciences department at the University of Maryland, Baltimore. She studies vitamin A signaling and the ERK 1/2 pathway in asthma in the Kane lab. She is an ASBMB Today volunteer contributor.

Get the latest from ASBMB Today

Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.

Latest in People

People highlights or most popular articles

Building better tools to decipher the lipidome
Profile

Building better tools to decipher the lipidome

Feb. 11, 2026

Chemical engineer–turned–biophysicist Matthew Mitsche uses curiosity, coding and creativity to tackle lipid biology, uncovering PNPLA3’s role in fatty liver disease and advancing mass spectrometry tools for studying complex lipid systems.

Summer research spotlight
Student Chapters

Summer research spotlight

Feb. 10, 2026

The 2025 Undergraduate Research Award recipients share results and insights from their lab experiences.

Pappu wins Provost Research Excellence Award
Member News

Pappu wins Provost Research Excellence Award

Feb. 9, 2026

He was recognized by Washington University for his exemplary research on intrinsically disordered proteins.

In memoriam: Rodney E. Harrington
In Memoriam

In memoriam: Rodney E. Harrington

Feb. 9, 2026

He helped clarify how chromatin’s physical properties and DNA structure shift during interactions with proteins that control gene expression and was an ASBMB member for 43 years.

Redefining lipid biology from droplets to ferroptosis
Award

Redefining lipid biology from droplets to ferroptosis

Feb. 5, 2026

James Olzmann will receive the ASBMB Avanti Award in Lipids at the ASBMB Annual Meeting, March 7–10, just outside of Washington, D.C.

Creating change in biochemistry education
Award

Creating change in biochemistry education

Feb. 3, 2026

Pamela Mertz will receive the ASBMB William C. Rose Award for Exemplary Contributions to Education at the ASBMB Annual Meeting, March 7-10 in Washington, D.C.