What’s new with DNA and RNA?
Eukaryotic gene expression is regulated at multiple layers. This session will cover emerging new mechanisms of gene expression regulation, centered around DNA and RNA. We will hear updates on regulation at the nucleosome structure and chromatin conformation level, how noncoding RNAs could impact transcription, and RNA modifications in post-transcriptional gene expression regulation. This session also will introduce diverse modern imaging technologies to visualize transcription activity and spatial transcriptome.
Keywords: chromatin structure, noncoding RNA, RNA modifications, super-resolution imaging, spatial transcriptome
Who should attend: students, postdocs and anyone interested in gene expression regulation, nucleosome structure and chromatin conformation, noncoding RNA and RNA modifications, super-resolution imaging and spatial transcriptome
Theme song: "The DNA Song" by Jam Campus (parody of "Trap Queen" by Fetty Wap)
This session is powered by nucleic acids.
Talks
- Cracking the nucleus: Finding order in chaos — Clodagh O'Shea, Salk Institute
- EM structures of nucleosomes with chaperones — Karolin Luger, University of Colorado Boulder
- Structural mechanism of human telomerase holoenzyme — Kelly Nguyen, Medical Research Council Laboratory of Molecular Biology
- Studying DNA-related processes on DNA curtains — Ilya Finkelstein, University of Texas at Austin
- m6A in the action of regulating the regulators — Kathy (Fange) Liu, University of Pennsylvania
- Jeannie Lee, Massachusetts General Hospital
- RNA methylation multitasking on chromatin — Blerta Xhemalce, University of Texas at Austin
- RNA methylation in gene expression regulation — Chuan He, University of Pennsylvania
- Visualizing RNA in life cells — Timothy Stasevich, Colorado State University
- Visualizing the dynamic genome during development, Alistair Boettiger, Stanford University
- 3D in situ RNA sequencing — Xiao Wang, Broad Institute and Massachusetts Institute of Technology
- Engineering the repetitive 3D genome in human disease— Jennifer Phillips–Cremins, University of Pennsylvania
Learn more
Check out all ten thematic symposia planned for the 2022 ASBMB annual meeting:
- Diversity, equity and inclusion
- Protein machines and disorder
- Signaling
- Quality control in organelles
- Metabolism
- Enzymology
- RNA/DNA
- Membranes/lipids
- Glycobiology
- Education and professional development
Enjoy reading ASBMB Today?
Become a member to receive the print edition four times a year and the digital edition weekly.
Learn moreFeatured jobs
from the ASBMB career center
Get the latest from ASBMB Today
Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.
Latest in Science
Science highlights or most popular articles
Cells have more mini ‘organs’ than researchers thought
Membraneless organelles, also called biomolecular condensates, are changing how scientists think about protein chemistry, various diseases and even the origin of life.
Institute launches a new AI initiative to power biological research
Stowers investigator Julia Zeitlinger selected to head effort and leverage cutting-edge computational techniques to accelerate scientific discoveries.
From the journals: JLR
Fixation method to quantify brain metabolites. Belly fat and liver disease crosstalk. Stopping heart diseases in schizophrenic patients. Read about the recent JLR papers on these topics.
Does a protein hold the key to Alzheimer’s?
Researchers in Maryland and Massachusetts team up to study how SORL1 promotes tau trafficking and seeding in cells that leads to the neurodegenerative disorder.
Cracking the recipe for perfect plant-based eggs
It involves finding just the right proteins. With new ingredients and processes, the next generation of substitutes will be not just more egg-like, but potentially more nutritious.
MSU researchers leverage cryo-EM for decades-in-the-making breakthrough
Lee Kroos and Ben Orlando have reported the first high-resolution experimentally determined structures of the intramembrane protease SpolVFB.