Journal News

Receptor antagonist reduces age-related bone loss in mice

Emily Ulrich
Aug. 6, 2025

Bone remodeling involves a regulation between osteoblasts for bone formation and osteoclasts for bone resorption, and this process shifts out of balance with age and with the development of osteoporosis. The complement system, activated as part of the innate immune response to infection, also functions in bone development. The G protein-coupled receptor C3aR is expressed as a component of the complement system in bone marrow cells. Fangyu Li and Shun Cui at Huazhong University of Science and Technology investigated whether C3aR plays a role in age-related impacts on bone remodeling. They published their recent findings in the Journal of Biological Chemistry.

3D rendering of the three stages of osteoporosis featuring progressive bone loss.
3D rendering of the three stages of osteoporosis featuring progressive bone loss.

The researchers first noted that C3aR expression trends upward as mice age, in conjunction with higher levels of senescence markers. In contrast, mice with C3aR knocked out showed an increase in bone mass compared to a control group of the same age. The C3aR knockout mice also exhibited higher expression of the osteogenic marker osteoprotegerin and lower expression of the osteoclast marker tartaric acid resistance phosphatase, suggesting a shift toward bone formation over resorption.

In addition, the authors tested a C3aR antagonist, called JR14a, in cells treated with D-galactose to mimic cell damage caused by aging  and found that the antagonist restored cell viability. They applied JR14a to a mouse model, and their histologic staining showed an increase in osteoblasts and a decrease in osteoclasts, suggesting partial inhibition of bone loss.

Fluorescence labeling experiments performed in this study indicated that JR14a initiates YAP1/β-catenin signaling, a pathway known to promote osteoblast differentiation. Future studies will help determine the details of downstream effects caused by C3aR inhibition and the possibility of targeting C3aR for relieving age-related dysfunction in bone remodeling.

Enjoy reading ASBMB Today?

Become a member to receive the print edition four times a year and the digital edition monthly.

Learn more
Emily Ulrich

Emily Ulrich is ASBMB’s former science editor.

Get the latest from ASBMB Today

Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.

Latest in Science

Science highlights or most popular articles

How Alixorexton could transform narcolepsy treatment
News

How Alixorexton could transform narcolepsy treatment

Nov. 18, 2025

A new investigational drug, alixorexton, targets the brain’s orexin system to restore wakefulness in people with narcolepsy type 1. Alkermes chemist Brian Raymer shares how molecular modeling turned a lab idea into a promising phase 3 therapy.

Phosphatases and pupils: A dual legacy
Profile

Phosphatases and pupils: A dual legacy

Nov. 13, 2025

Yale professor Anton Bennett explores how protein tyrosine phosphatases shape disease, while building a legacy of mentorship that expands opportunity and fuels discovery in biochemistry and molecular biology.

Extracellular vesicles offer clues to cattle reproduction
Journal News

Extracellular vesicles offer clues to cattle reproduction

Nov. 11, 2025

Extracellular vesicles from pregnant cattle support embryo development better than laboratory models, highlighting their potential to improve reproductive efficiency in bovine embryo cultures. Read more about this recent MCP paper.

Proteomics reveals protein shifts in diabetic eye disease
Journal News

Proteomics reveals protein shifts in diabetic eye disease

Nov. 11, 2025

Using proteomics, researchers identified protein changes in eye fluid that mark diabetic retinopathy progression and may serve as biomarkers for vision-threatening complications. Read more about this recent MCP paper.

Protein modifications drive lung cancer resistance
Journal News

Protein modifications drive lung cancer resistance

Nov. 6, 2025

New assay enriches protein modifications in a single process, enabling detection of key changes in drug-resistant lung cancer cells that may guide future therapies.

How antigen-processing proteins shape immunity
Journal News

How antigen-processing proteins shape immunity

Nov. 6, 2025

Researchers show how components of the antigen processing machinery shape the immunopeptidome, offering insights into immune regulation and cancer biology.