Receptor antagonist reduces age-related bone loss in mice
Bone remodeling involves a regulation between osteoblasts for bone formation and osteoclasts for bone resorption, and this process shifts out of balance with age and with the development of osteoporosis. The complement system, activated as part of the innate immune response to infection, also functions in bone development. The G protein-coupled receptor C3aR is expressed as a component of the complement system in bone marrow cells. Fangyu Li and Shun Cui at Huazhong University of Science and Technology investigated whether C3aR plays a role in age-related impacts on bone remodeling. They published their recent findings in the Journal of Biological Chemistry.
The researchers first noted that C3aR expression trends upward as mice age, in conjunction with higher levels of senescence markers. In contrast, mice with C3aR knocked out showed an increase in bone mass compared to a control group of the same age. The C3aR knockout mice also exhibited higher expression of the osteogenic marker osteoprotegerin and lower expression of the osteoclast marker tartaric acid resistance phosphatase, suggesting a shift toward bone formation over resorption.
In addition, the authors tested a C3aR antagonist, called JR14a, in cells treated with D-galactose to mimic cell damage caused by aging and found that the antagonist restored cell viability. They applied JR14a to a mouse model, and their histologic staining showed an increase in osteoblasts and a decrease in osteoclasts, suggesting partial inhibition of bone loss.
Fluorescence labeling experiments performed in this study indicated that JR14a initiates YAP1/β-catenin signaling, a pathway known to promote osteoblast differentiation. Future studies will help determine the details of downstream effects caused by C3aR inhibition and the possibility of targeting C3aR for relieving age-related dysfunction in bone remodeling.
Enjoy reading ASBMB Today?
Become a member to receive the print edition four times a year and the digital edition monthly.
Learn moreGet the latest from ASBMB Today
Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.
Latest in Science
Science highlights or most popular articles

Redefining lipid biology from droplets to ferroptosis
James Olzmann will receive the ASBMB Avanti Award in Lipids at the ASBMB Annual Meeting, March 7–10, just outside of Washington, D.C.

Women’s health cannot leave rare diseases behind
A physician living with lymphangioleiomyomatosis and a basic scientist explain why patient-driven, trial-ready research is essential to turning momentum into meaningful progress.

Life in four dimensions: When biology outpaces the brain
Nobel laureate Eric Betzig will discuss his research on information transfer in biology from proteins to organisms at the 2026 ASBMB Annual Meeting.

Fasting, fat and the molecular switches that keep us alive
Nutritional biochemist and JLR AE Sander Kersten has spent decades uncovering how the body adapts to fasting. His discoveries on lipid metabolism and gene regulation reveal how our ancient survival mechanisms may hold keys to modern metabolic health.

Redefining excellence to drive equity and innovation
Donita Brady will receive the ASBMB Ruth Kirschstein Award for Maximizing Access in Science at the ASBMB Annual Meeting, March 7–10, just outside of Washington, D.C.

Mining microbes for rare earth solutions
Joseph Cotruvo, Jr., will receive the ASBMB Mildred Cohn Young Investigator Award at the ASBMB Annual Meeting, March 7–10, just outside of Washington, D.C.