Journal News

Extracellular vesicles offer clues to cattle reproduction

Samara Baksh
By Samara Baksh
Nov. 11, 2025

Improving bovine reproductive efficiency requires a better understanding of how the maternal reproductive tract interacts with the developing embryo. To study this complex communication, scientists are developing in vitro models that better mimic the oviduct’s natural environment. Within this environment, extracellular vesicles, or EVs, regulate processes that support embryo health.

In a study conducted by Rosane Mazzarella from the National Institute for Agricultural and Food Research and Technology, published in Molecular & Cellular Proteomics, scientists examined the role of EVs in maternal–embryonic communication by comparing their protein cargo inside and outside of the maternal womb. Researchers collected EVs from the oviductal fluid of cyclic and pregnant heifers as well as from the conditioned media of oviductal explants removed from heifers and cultured in the lab, either with or without embryos. 

About 78% of embryo-associated proteins overlapped between pregnant heifers and explants cultured with embryos, indicating that maternal-embryonic communication can be partially mimicked outside the body. However, label-free quantification revealed that EVs collected directly from the oviducts of pregnant animals and those produced by explants cultured with embryos displayed both qualitative and quantitative differences in their protein profiles. Notably, 49 EV proteins were unique to pregnant heifers. Among them, centromere protein E, which plays a role in cell division, is significant in identifying healthy, rapidly developing cow embryos and plays a key role in maintaining chromosome stability. Another protein, JAK3, helps relay signals from certain immune-related molecules and may promote embryonic cell survival and growth. These findings suggest that EVs from the natural reproductive environment may offer more robust support for embryo development.

Taken together, while laboratory systems replicate many features of maternal–embryonic signaling, EVs from pregnant heifers appear to deliver a more complete set of developmental cues, offering potential for enhancing artificial embryo culture systems via supplementation.

Enjoy reading ASBMB Today?

Become a member to receive the print edition four times a year and the digital edition monthly.

Learn more
Samara Baksh
Samara Baksh

Samara Baksh is a graduate of the Master’s in Biotechnology program at Johns Hopkins University. She works as a bench scientist and is a volunteer contributor for ASBMB Today.

Get the latest from ASBMB Today

Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.

Latest in Science

Science highlights or most popular articles

Cholesterol as a novel biomarker for Fragile X syndrome
Journal News

Cholesterol as a novel biomarker for Fragile X syndrome

Nov. 28, 2025

Researchers in Quebec identified lower levels of a brain cholesterol metabolite, 24-hydroxycholesterol, in patients with fragile X syndrome, a finding that could provide a simple blood-based biomarker for understanding and managing the condition.

How lipid metabolism shapes sperm development
Journal News

How lipid metabolism shapes sperm development

Nov. 26, 2025

Researchers at Hokkaido University identify the enzyme behind a key lipid in sperm development. The findings reveal how seminolipids shape sperm formation and may inform future diagnostics and treatments for male infertility.

Mass spec method captures proteins in native membranes
Journal News

Mass spec method captures proteins in native membranes

Nov. 25, 2025

Yale scientists developed a mass spec protocol that keeps proteins in their native environment, detects intact protein complexes and tracks drug binding, offering a clearer view of membrane biology.

Laser-assisted cryoEM method preserves protein structure
Journal News

Laser-assisted cryoEM method preserves protein structure

Nov. 25, 2025

University of Wisconsin–Madison researchers devised a method that prevents protein compaction during cryoEM prep, restoring natural structure for mass spec studies. The approach could expand high-resolution imaging to more complex protein systems.

Method sharpens proteome-wide view of structural changes
Journal News

Method sharpens proteome-wide view of structural changes

Nov. 25, 2025

Researchers developed a method that improves limited proteolysis coupled with mass spectrometry, separating true changes from abundance or splicing effects.

Discoveries made possible by DNA
Feature

Discoveries made possible by DNA

Nov. 24, 2025

The discovery of DNA’s double helix revealed how genetic information is stored, copied and expressed. Revisit that breakthrough and traces how it laid the foundation for modern molecular biology, genomics and biotechnology.