Extracellular vesicles offer clues to cattle reproduction
Improving bovine reproductive efficiency requires a better understanding of how the maternal reproductive tract interacts with the developing embryo. To study this complex communication, scientists are developing in vitro models that better mimic the oviduct’s natural environment. Within this environment, extracellular vesicles, or EVs, regulate processes that support embryo health.

In a study conducted by Rosane Mazzarella from the National Institute for Agricultural and Food Research and Technology, published in Molecular & Cellular Proteomics, scientists examined the role of EVs in maternal–embryonic communication by comparing their protein cargo inside and outside of the maternal womb. Researchers collected EVs from the oviductal fluid of cyclic and pregnant heifers as well as from the conditioned media of oviductal explants removed from heifers and cultured in the lab, either with or without embryos.
About 78% of embryo-associated proteins overlapped between pregnant heifers and explants cultured with embryos, indicating that maternal-embryonic communication can be partially mimicked outside the body. However, label-free quantification revealed that EVs collected directly from the oviducts of pregnant animals and those produced by explants cultured with embryos displayed both qualitative and quantitative differences in their protein profiles. Notably, 49 EV proteins were unique to pregnant heifers. Among them, centromere protein E, which plays a role in cell division, is significant in identifying healthy, rapidly developing cow embryos and plays a key role in maintaining chromosome stability. Another protein, JAK3, helps relay signals from certain immune-related molecules and may promote embryonic cell survival and growth. These findings suggest that EVs from the natural reproductive environment may offer more robust support for embryo development.
Taken together, while laboratory systems replicate many features of maternal–embryonic signaling, EVs from pregnant heifers appear to deliver a more complete set of developmental cues, offering potential for enhancing artificial embryo culture systems via supplementation.
Enjoy reading ASBMB Today?
Become a member to receive the print edition four times a year and the digital edition monthly.
Learn moreGet the latest from ASBMB Today
Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.
Latest in Science
Science highlights or most popular articles

Proteomics reveals protein shifts in diabetic eye disease
Using proteomics, researchers identified protein changes in eye fluid that mark diabetic retinopathy progression and may serve as biomarkers for vision-threatening complications. Read more about this recent MCP paper.

Protein modifications drive lung cancer resistance
New assay enriches protein modifications in a single process, enabling detection of key changes in drug-resistant lung cancer cells that may guide future therapies.

How antigen-processing proteins shape immunity
Researchers show how components of the antigen processing machinery shape the immunopeptidome, offering insights into immune regulation and cancer biology.

New chemical strategy boosts accuracy in proteomics
Researchers develop a methylamine-based method that nearly eliminates peptide overlabeling in proteomics, improving accuracy in protein identification and quantitation.

Understanding the roles of extracellular matrix and vesicles in valvular disease
MOSAIC scholar Cassandra Clift uses mass spectrometry and multiomics to study cardiovascular calcification and collagen dysregulation, bridging her background in bioengineering and biology to investigate extracellular vesicles and heart disease.

Lipid profiles reveal sex differences in type 2 diabetes
Researchers explored the lipid profiles of individuals with type 2 diabetes and identified potentially useful lipid biomarkers for this condition.