Journal News

A look into the rice glycoproteome

Ecem Arpaci
By Ecem Arpaci
June 17, 2025

Proteins undergo posttranslational modifications, such as N-glycosylation, during which a sugar chain is added to the amino acid asparagine at specific sites to form a glycoprotein. N-glycosylation aids cell-to-cell communication as well as pathogen interactions in animals, but scientists know little about this modification in plants.

Oryza sativa in a rice field and surrounding natural scenery in Indonesia.
Syariful Msth via Wikimedia Commons
Oryza sativa in a rice field and surrounding natural scenery in Indonesia.

To address this gap, Cong Lei, Xilong Li and Wenjia Li of Yazhouwan National Laboratory and a research team in China developed a metabolic glycan labeling approach, which they used to map N-glycans in rice. In their Molecular & Cellular Proteomics paper, the authors grew Oryza sativa, or rice, with a nutrient mixture containing N-azidoacetylgalactosamine, or GalNAz, an artificial glycan building block they could track over time. GalNAz has a unique chemical group to which the authors attached an affinity tag using click chemistry. This made it possible to study the glycoproteins with liquid chromatography–tandem mass spectrometry.

The team identified hundreds of rice-specific N-linked glycoproteins involved in essential biological processes such as plant growth, starch metabolism and protein processing. In addition, several identified proteins mapped to the endoplasmic reticulum–associated protein degradation, or ERAD, pathways, which maintain a balance between protein folding and degradation. The authors also found the core proteins of this pathway to be N-glycosylated in two human cell lines, suggesting that its regulation is conserved between species.

As changes in N-glycosylation have been linked to disrupted plant development, it is important to shed light on modified proteins and sites. This workflow can be used on other plants to expand our understanding of plant glycoproteomes for agricultural research and biotechnology.

Enjoy reading ASBMB Today?

Become a member to receive the print edition four times a year and the digital edition monthly.

Learn more
Ecem Arpaci
Ecem Arpaci

Ecem Arpaci is a biochemistry student at Imperial College London and a research intern at Radboud University Medical Center. She is an ASBMB Today volunteer contributor.

Get the latest from ASBMB Today

Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.

Latest in Science

Science highlights or most popular articles

Protein modifications drive lung cancer resistance
Journal News

Protein modifications drive lung cancer resistance

Nov. 6, 2025

New assay enriches protein modifications in a single process, enabling detection of key changes in drug-resistant lung cancer cells that may guide future therapies.

How antigen-processing proteins shape immunity
Journal News

How antigen-processing proteins shape immunity

Nov. 6, 2025

Researchers show how components of the antigen processing machinery shape the immunopeptidome, offering insights into immune regulation and cancer biology.

New chemical strategy boosts accuracy in proteomics
Journal News

New chemical strategy boosts accuracy in proteomics

Nov. 6, 2025

Researchers develop a methylamine-based method that nearly eliminates peptide overlabeling in proteomics, improving accuracy in protein identification and quantitation.

Understanding the roles of extracellular matrix and vesicles in valvular disease
Profile

Understanding the roles of extracellular matrix and vesicles in valvular disease

Oct. 30, 2025

MOSAIC scholar Cassandra Clift uses mass spectrometry and multiomics to study cardiovascular calcification and collagen dysregulation, bridging her background in bioengineering and biology to investigate extracellular vesicles and heart disease.

Lipid profiles reveal sex differences in type 2 diabetes
Journal News

Lipid profiles reveal sex differences in type 2 diabetes

Oct. 29, 2025

Researchers explored the lipid profiles of individuals with type 2 diabetes and identified potentially useful lipid biomarkers for this condition.

Serum lipids may predict early diabetes risk
Journal News

Serum lipids may predict early diabetes risk

Oct. 29, 2025

Researchers found that levels of two key fatty acids may predict worsening tolerance for glucose, independent of body fat and insulin levels. In turn, these fatty acids may serve as early T2D biomarkers.