A look into the rice glycoproteome
Proteins undergo posttranslational modifications, such as N-glycosylation, during which a sugar chain is added to the amino acid asparagine at specific sites to form a glycoprotein. N-glycosylation aids cell-to-cell communication as well as pathogen interactions in animals, but scientists know little about this modification in plants.
To address this gap, Cong Lei, Xilong Li and Wenjia Li of Yazhouwan National Laboratory and a research team in China developed a metabolic glycan labeling approach, which they used to map N-glycans in rice. In their Molecular & Cellular Proteomics paper, the authors grew Oryza sativa, or rice, with a nutrient mixture containing N-azidoacetylgalactosamine, or GalNAz, an artificial glycan building block they could track over time. GalNAz has a unique chemical group to which the authors attached an affinity tag using click chemistry. This made it possible to study the glycoproteins with liquid chromatography–tandem mass spectrometry.
The team identified hundreds of rice-specific N-linked glycoproteins involved in essential biological processes such as plant growth, starch metabolism and protein processing. In addition, several identified proteins mapped to the endoplasmic reticulum–associated protein degradation, or ERAD, pathways, which maintain a balance between protein folding and degradation. The authors also found the core proteins of this pathway to be N-glycosylated in two human cell lines, suggesting that its regulation is conserved between species.
As changes in N-glycosylation have been linked to disrupted plant development, it is important to shed light on modified proteins and sites. This workflow can be used on other plants to expand our understanding of plant glycoproteomes for agricultural research and biotechnology.
Enjoy reading ASBMB Today?
Become a member to receive the print edition four times a year and the digital edition monthly.
Learn moreGet the latest from ASBMB Today
Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.
Latest in Science
Science highlights or most popular articles

ASBMB announces 2026 JBC/Tabor awardees
The seven awardees are first authors of outstanding papers published in 2025 in the Journal of Biological Chemistry.

Missing lipid shrinks heart and lowers exercise capacity
Researchers uncovered the essential role of PLAAT1 in maintaining heart cardiolipin, mitochondrial function and energy metabolism, linking this enzyme to exercise capacity and potential cardiovascular disease pathways.

Decoding how bacteria flip host’s molecular switches
Kim Orth will receive the Earl and Thressa Stadtman Distinguished Scientists Award at the ASBMB Annual Meeting, March 7–10, just outside of Washington, D.C.

Defining JNKs: Targets for drug discovery
Roger Davis will receive the Bert and Natalie Vallee Award in Biomedical Science at the ASBMB Annual Meeting, March 7–10, just outside of Washington, D.C.

Building better tools to decipher the lipidome
Chemical engineer–turned–biophysicist Matthew Mitsche uses curiosity, coding and creativity to tackle lipid biology, uncovering PNPLA3’s role in fatty liver disease and advancing mass spectrometry tools for studying complex lipid systems.

Redefining lipid biology from droplets to ferroptosis
James Olzmann will receive the ASBMB Avanti Award in Lipids at the ASBMB Annual Meeting, March 7–10, just outside of Washington, D.C.