Journal News

A look into the rice glycoproteome

Ecem Arpaci
By Ecem Arpaci
June 17, 2025

Proteins undergo posttranslational modifications, such as N-glycosylation, during which a sugar chain is added to the amino acid asparagine at specific sites to form a glycoprotein. N-glycosylation aids cell-to-cell communication as well as pathogen interactions in animals, but scientists know little about this modification in plants.

Oryza sativa in a rice field and surrounding natural scenery in Indonesia.
Syariful Msth via Wikimedia Commons
Oryza sativa in a rice field and surrounding natural scenery in Indonesia.

To address this gap, Cong Lei, Xilong Li and Wenjia Li of Yazhouwan National Laboratory and a research team in China developed a metabolic glycan labeling approach, which they used to map N-glycans in rice. In their Molecular & Cellular Proteomics paper, the authors grew Oryza sativa, or rice, with a nutrient mixture containing N-azidoacetylgalactosamine, or GalNAz, an artificial glycan building block they could track over time. GalNAz has a unique chemical group to which the authors attached an affinity tag using click chemistry. This made it possible to study the glycoproteins with liquid chromatography–tandem mass spectrometry.

The team identified hundreds of rice-specific N-linked glycoproteins involved in essential biological processes such as plant growth, starch metabolism and protein processing. In addition, several identified proteins mapped to the endoplasmic reticulum–associated protein degradation, or ERAD, pathways, which maintain a balance between protein folding and degradation. The authors also found the core proteins of this pathway to be N-glycosylated in two human cell lines, suggesting that its regulation is conserved between species.

As changes in N-glycosylation have been linked to disrupted plant development, it is important to shed light on modified proteins and sites. This workflow can be used on other plants to expand our understanding of plant glycoproteomes for agricultural research and biotechnology.

Enjoy reading ASBMB Today?

Become a member to receive the print edition four times a year and the digital edition monthly.

Learn more
Ecem Arpaci
Ecem Arpaci

Ecem Arpaci is a biochemistry student at Imperial College London and a research intern at Radboud University Medical Center. She is an ASBMB Today volunteer contributor.

Get the latest from ASBMB Today

Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.

Latest in Science

Science highlights or most popular articles

Spider-like proteins spin defenses to control immunity
News

Spider-like proteins spin defenses to control immunity

Oct. 17, 2025

Researchers from Utrecht University discovered two distinct binding modes of a spider-shaped immune inhibitor found in serum.

A biological camera: How AI is transforming retinal imaging
Feature

A biological camera: How AI is transforming retinal imaging

Oct. 15, 2025

AI is helping clinicians see a more detailed view into the eye, allowing them to detect diabetic retinopathy earlier and expand access through tele-ophthalmology. These advances could help millions see a clearer future.

AI in the lab: The power of smarter questions
Essay

AI in the lab: The power of smarter questions

Oct. 14, 2025

An assistant professor discusses AI's evolution from a buzzword to a trusted research partner. It helps streamline reviews, troubleshoot code, save time and spark ideas, but its success relies on combining AI with expertise and critical thinking.

Training AI to uncover novel antimicrobials
Feature

Training AI to uncover novel antimicrobials

Oct. 9, 2025

Antibiotic resistance kills millions, but César de la Fuente’s lab is fighting back. By pairing AI with human insight, researchers are uncovering hidden antimicrobial peptides across the tree of life with a 93% success rate against deadly pathogens.

AI-designed biomarker improves malaria diagnostics
Journal News

AI-designed biomarker improves malaria diagnostics

Oct. 8, 2025

Researchers from the University of Melbourne engineered Plasmodium vivax diagnostic protein with enhanced yield and stability while preserving antibody-binding, paving the way for more reliable malaria testing.

Matrix metalloproteinase inhibitor reduces cancer invasion
Journal News

Matrix metalloproteinase inhibitor reduces cancer invasion

Oct. 8, 2025

Scientists at the Mayo Clinic engineered a TIMP-1 protein variant that selectively inhibits MMP-9 and reduces invasion of triple-negative breast cancer cells, offering a promising tool for targeted cancer research.