Engineered fusion protein targets kiwifruit pathogen
The plant pathogen Pseudomonas syringae pv. actinidiae, or Psa, causes kiwifruit canker and contributes to larger issues of food shortage. Finding biocontrol agents that specifically target this pathogen would benefit agricultural production. Endolysin enzymes from bacteriophages have emerged as promising candidates. Endolysins cleave peptidoglycan, a layer of the cell wall in gram-positive bacteria. However, the gram-negative Psa has an outer membrane that shields the peptidoglycan inner layer. Suzanne Warring and Hazel Sisson at the University of Otago and a team of international scientists recently published their research in the Journal of Biological Chemistry on developing an endolysin fusion protein active against Psa.

The authors used VersaTile molecular shuffling, a technique that created a library of phage proteins attached to endolysin. They performed a high-throughput screen for peptidoglycan-degrading activity and identified a lead compound that inhibited Psa growth. This hit compound, called ELP-E10, contains a lipase fused to endolysin, and the authors determined that the antibacterial activity relies on functional active sites for each fusion partner.
Notably, ELP-E10 shows specific activity for Psa, especially when combined with citric acid as a chemical permeabilizer. The researchers tested ELP-E10 activity against pathogens Pseudomonas aeruginosa and Staphylococcus aureus, as well as the commensal soil bacteria Pseudomonas fluorescens, and found that ELP-E10 shows specificity for Psa.
More experiments will help determine the exact outer membrane substrate that the lipase of ELP-E10 targets to allow the endolysin to reach the Psa peptidoglycan. These results suggest that endolysin fusion proteins could form promising antimicrobial candidates for agricultural use.
Enjoy reading ASBMB Today?
Become a member to receive the print edition four times a year and the digital edition monthly.
Learn moreGet the latest from ASBMB Today
Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.
Latest in Science
Science highlights or most popular articles

ApoA1 reduce atherosclerotic plaques via cell death pathway
Researchers show that ApoA1, a key HDL protein, helps reduce plaque and necrotic core formation in atherosclerosis by modulating Bim-driven macrophage death. The findings reveal new insights into how ApoA1 protects against heart disease.

Omega-3 lowers inflammation, blood pressure in obese adults
A randomized study shows omega-3 supplements reduce proinflammatory chemokines and lower blood pressure in obese adults, furthering the understanding of how to modulate cardiovascular disease risk.

AI unlocks the hidden grammar of gene regulation
Using fruit flies and artificial intelligence, Julia Zeitlinger’s lab is decoding genome patterns — revealing how transcription factors and nucleosomes control gene expression, pushing biology toward faster, more precise discoveries.

Zebrafish model links low omega-3s to eye abnormalities
Researchers at the University of Colorado Anschutz developed a zebrafish model to show that low maternal docosahexaenoic acid can disrupt embryo eye development and immune gene expression, offering a tool to study nutrition in neurodevelopment.

Top reviewers at ASBMB journals
Editors recognize the heavy-lifters and rising stars during Peer Review Week.

Teaching AI to listen
A computational medicine graduate student reflects on building natural language processing tools that extract meaning from messy clinical notes — transforming how we identify genetic risk while redefining what it means to listen in science.