Journal News

Engineered fusion protein targets kiwifruit pathogen

Emily Ulrich
Aug. 6, 2025

The plant pathogen Pseudomonas syringae pv. actinidiae, or Psa, causes kiwifruit canker and contributes to larger issues of food shortage. Finding biocontrol agents that specifically target this pathogen would benefit agricultural production. Endolysin enzymes from bacteriophages have emerged as promising candidates. Endolysins cleave peptidoglycan, a layer of the cell wall in gram-positive bacteria. However, the gram-negative Psa has an outer membrane that shields the peptidoglycan inner layer. Suzanne Warring and Hazel Sisson at the University of Otago and a team of international scientists recently published their research in the Journal of Biological Chemistry on developing an endolysin fusion protein active against Psa.

The authors used VersaTile molecular shuffling, a technique that created a library of phage proteins attached to endolysin. They performed a high-throughput screen for peptidoglycan-degrading activity and identified a lead compound that inhibited Psa growth. This hit compound, called ELP-E10, contains a lipase fused to endolysin, and the authors determined that the antibacterial activity relies on functional active sites for each fusion partner.

Notably, ELP-E10 shows specific activity for Psa, especially when combined with citric acid as a chemical permeabilizer. The researchers tested ELP-E10 activity against pathogens Pseudomonas aeruginosa and Staphylococcus aureus, as well as the commensal soil bacteria Pseudomonas fluorescens, and found that ELP-E10 shows specificity for Psa.

More experiments will help determine the exact outer membrane substrate that the lipase of ELP-E10 targets to allow the endolysin to reach the Psa peptidoglycan. These results suggest that endolysin fusion proteins could form promising antimicrobial candidates for agricultural use.

Enjoy reading ASBMB Today?

Become a member to receive the print edition four times a year and the digital edition monthly.

Learn more
Emily Ulrich

Emily Ulrich is the ASBMB’s science editor.

Get the latest from ASBMB Today

Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.

Latest in Science

Science highlights or most popular articles

Receptor antagonist reduces age-related bone loss in mice
Journal News

Receptor antagonist reduces age-related bone loss in mice

Aug. 6, 2025

Receptor antagonist reduces bone loss and promotes osteoblast activity in aging mice, highlighting its potential to treat osteoporosis. Read more about this recent JBC paper.

Pathogen-derived enzyme engineered for antibiotic design
Journal News

Pathogen-derived enzyme engineered for antibiotic design

Aug. 6, 2025

Engineered variants of a bacterial enzyme developed at the University at Buffalo accept larger substrates, paving the way for new acinetobactin-based antimicrobials. Read more about this recent JBC paper.

Omega-3 fats linked to healthy aging and improved heart metabolism
Journal News

Omega-3 fats linked to healthy aging and improved heart metabolism

Aug. 1, 2025

Scientists from the University of Iowa find that a diet high in polyunsaturated fatty acids from fish oil increases cardiac triglyceride uptake and improves insulin sensitivity. Read more about this recent JLR study.

RA patient blood reveals joint innerworkings
Journal News

RA patient blood reveals joint innerworkings

July 25, 2025

Researchers in the Netherlands use mass spectrometry to compare the proteome of plasma and synovial fluid in rheumatoid arthritis patients and find a correlation. Read more about this recent paper in Molecular & Cellular Proteomics.

Hope for a cure hangs on research
Essay

Hope for a cure hangs on research

July 17, 2025

Amid drastic proposed cuts to biomedical research, rare disease families like Hailey Adkisson’s fight for survival and hope. Without funding, science can’t “catch up” to help the patients who need it most.

Before we’ve lost what we can’t rebuild: Hope for prion disease
Feature

Before we’ve lost what we can’t rebuild: Hope for prion disease

July 15, 2025

Sonia Vallabh and Eric Minikel, a husband-and-wife team racing to cure prion disease, helped develop ION717, an antisense oligonucleotide treatment now in clinical trials. Their mission is personal — and just getting started.