AI-designed biomarker improves malaria diagnostics
The malaria parasite Plasmodium vivax can persist in a dormant state, causing relapsed infections and ongoing transmission. To detect possible dormant infections, clinicians use a diagnostic test containing parasite proteins, such as reticulocyte-binding protein 2b, or PvRBP2b, that trigger a host antibody response. Of the biomarkers in this test, a response to PvRBP2b provides the strongest indication of a dormant infection, but PvRBP2b is difficult to produce and has low stability. Jaison D Sa at the Walter and Eliza Hall Institute of Medical Research and the University of Melbourne, Australia, and an international team recently reported stabilized PvRBP2b variants in the Journal of Biological Chemistry.
Because much of PvRBP2b’s surface binds antibodies, the team had to preserve these sites while boosting stability to keep the protein viable for diagnostic tests. They determined that they needed to mutate residues in the protein core, a challenge to maintaining the overall protein structure. They used computational modeling and an artificial intelligence–based sequence generator to design three PvRBP2b variants. All three purified variants had higher yields and greater thermal stability than the nonmutated protein.
X-ray crystallography and biolayer interferometry, a technique measuring light reflection patterns to sense biomolecule interactions, confirmed that the variants retained the original overall structure and antibody-binding capabilities. Finally, in plasma assays using samples from individuals in malaria-endemic regions, the variants elicited antibody responses comparable to the original PvRBP2b protein.
These variants could improve malaria diagnostic kits and may help solve protein stability issues in other diagnostic tests.
Enjoy reading ASBMB Today?
Become a member to receive the print edition four times a year and the digital edition monthly.
Learn moreGet the latest from ASBMB Today
Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.
Latest in Science
Science highlights or most popular articles

Redefining excellence to drive equity and innovation
Donita Brady will receive the ASBMB Ruth Kirschstein Award for Maximizing Access in Science at the ASBMB Annual Meeting, March 7–10, just outside of Washington, D.C.

Mining microbes for rare earth solutions
Joseph Cotruvo, Jr., will receive the ASBMB Mildred Cohn Young Investigator Award at the ASBMB Annual Meeting, March 7–10, just outside of Washington, D.C.

Fueling healthier aging, connecting metabolism stress and time
Biochemist Melanie McReynolds investigates how metabolism and stress shape the aging process. Her research on NAD+, a molecule central to cellular energy, reveals how maintaining its balance could promote healthier, longer lives.

Mapping proteins, one side chain at a time
Roland Dunbrack Jr. will receive the ASBMB DeLano Award for Computational Biosciences at the ASBMB Annual Meeting, March 7–10, just outside of Washington, D.C.

Exploring the link between lipids and longevity
Meng Wang will present her work on metabolism and aging at the ASBMB Annual Meeting, March 7-10, just outside of Washington, D.C.

Defining a ‘crucial gatekeeper’ of lipid metabolism
George Carman receives the Herbert Tabor Research Award at the ASBMB Annual Meeting, March 7–10, just outside of Washington, D.C.