AI-designed biomarker improves malaria diagnostics
The malaria parasite Plasmodium vivax can persist in a dormant state, causing relapsed infections and ongoing transmission. To detect possible dormant infections, clinicians use a diagnostic test containing parasite proteins, such as reticulocyte-binding protein 2b, or PvRBP2b, that trigger a host antibody response. Of the biomarkers in this test, a response to PvRBP2b provides the strongest indication of a dormant infection, but PvRBP2b is difficult to produce and has low stability. Jaison D Sa at the Walter and Eliza Hall Institute of Medical Research and the University of Melbourne, Australia, and an international team recently reported stabilized PvRBP2b variants in the Journal of Biological Chemistry.
Because much of PvRBP2b’s surface binds antibodies, the team had to preserve these sites while boosting stability to keep the protein viable for diagnostic tests. They determined that they needed to mutate residues in the protein core, a challenge to maintaining the overall protein structure. They used computational modeling and an artificial intelligence–based sequence generator to design three PvRBP2b variants. All three purified variants had higher yields and greater thermal stability than the nonmutated protein.
X-ray crystallography and biolayer interferometry, a technique measuring light reflection patterns to sense biomolecule interactions, confirmed that the variants retained the original overall structure and antibody-binding capabilities. Finally, in plasma assays using samples from individuals in malaria-endemic regions, the variants elicited antibody responses comparable to the original PvRBP2b protein.
These variants could improve malaria diagnostic kits and may help solve protein stability issues in other diagnostic tests.
Enjoy reading ASBMB Today?
Become a member to receive the print edition four times a year and the digital edition monthly.
Learn moreGet the latest from ASBMB Today
Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.
Latest in Science
Science highlights or most popular articles

Building better tools to decipher the lipidome
Chemical engineer–turned–biophysicist Matthew Mitsche uses curiosity, coding and creativity to tackle lipid biology, uncovering PNPLA3’s role in fatty liver disease and advancing mass spectrometry tools for studying complex lipid systems.

Redefining lipid biology from droplets to ferroptosis
James Olzmann will receive the ASBMB Avanti Award in Lipids at the ASBMB Annual Meeting, March 7–10, just outside of Washington, D.C.

Women’s health cannot leave rare diseases behind
A physician living with lymphangioleiomyomatosis and a basic scientist explain why patient-driven, trial-ready research is essential to turning momentum into meaningful progress.

Life in four dimensions: When biology outpaces the brain
Nobel laureate Eric Betzig will discuss his research on information transfer in biology from proteins to organisms at the 2026 ASBMB Annual Meeting.

Fasting, fat and the molecular switches that keep us alive
Nutritional biochemist and JLR AE Sander Kersten has spent decades uncovering how the body adapts to fasting. His discoveries on lipid metabolism and gene regulation reveal how our ancient survival mechanisms may hold keys to modern metabolic health.

Redefining excellence to drive equity and innovation
Donita Brady will receive the ASBMB Ruth Kirschstein Award for Maximizing Access in Science at the ASBMB Annual Meeting, March 7–10, just outside of Washington, D.C.