Antibiotic sensor directly binds drug in resistant bacteria
Vancomycin-resistant enterococci bacteria, or VRE, cause serious hospital-acquired infections, prompting scientists to search for new ways to target these hard-to-treat pathogens. VRE detect vancomycin through a transmembrane histidine kinase, called VanS, which phosphorylates the transcription factor VanR. Once phosphorylated, VanR triggers the production of enzymes that shield the bacterial cell wall from vancomycin’s effects. Ten genetic variants of this system exist, and disrupting it could restore vancomycin’s effectiveness. However, scientists do not understand how VanS senses vancomycin. Lina Maciunas, Photis Rotsides and a team at Drexel University College of Medicine tackled this question in their recent Journal of Biological Chemistry article.
The team developed an assay to study type-B VanS in nanodiscs, which mimic the cell membrane environment for purified membrane proteins. VanS performs three functions: autophosphorylation, transferring the phosphate group to VanR and dephosphorylating VanR. Testing these functions with vancomycin, the authors found increased autophosphorylation and slightly decreased dephosphorylation, consistent with the antibiotic activating the resistance system.
They then used a modified vancomycin photoaffinity probe and detected direct binding of the VanS sensor domain in the nanodisc, as assessed by mass spectrometry. Isothermal titration calorimetry confirmed that this interaction is specific for vancomycin since VanS did not bind a similar antibiotic.
Future work will explore how other VanS variants interact with vancomycin. Detailed insight into this interaction could guide inhibitor design to block antibiotic resistance in severe infections.
Enjoy reading ASBMB Today?
Become a member to receive the print edition four times a year and the digital edition monthly.
Learn moreGet the latest from ASBMB Today
Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.
Latest in Science
Science highlights or most popular articles

The science of staying strong
Muscles power every movement, but they also tell the story of aging itself. Scientists are uncovering how strength fades, why some species resist it and what lifestyle and molecular clues could help preserve muscle health for life.

Bacteriophage protein could make queso fresco safer
Researchers characterized the structure and function of PlyP100, a bacteriophage protein that shows promise as a food-safe antimicrobial for preventing Listeria monocytogenes growth in fresh cheeses.

Building the blueprint to block HIV
Wesley Sundquist will present his work on the HIV capsid and revolutionary drug, Lenacapavir, at the ASBMB Annual Meeting, March 7–10, in Maryland.

Gut microbes hijack cancer pathway in high-fat diets
Researchers at the Feinstein Institutes for Medical Research found that a high-fat diet increases ammonia-producing bacteria in the gut microbiome of mice, which in turn disrupts TGF-β signaling and promotes colorectal cancer.

Mapping fentanyl’s cellular footprint
Using a new imaging method, researchers at State University of New York at Buffalo traced fentanyl’s effects inside brain immune cells, revealing how the drug alters lipid droplets, pointing to new paths for addiction diagnostics.

Designing life’s building blocks with AI
Tanja Kortemme, a professor at the University of California, San Francisco, will discuss her research using computational biology to engineer proteins at the 2026 ASBMB Annual Meeting.