Antibiotic sensor directly binds drug in resistant bacteria
Vancomycin-resistant enterococci bacteria, or VRE, cause serious hospital-acquired infections, prompting scientists to search for new ways to target these hard-to-treat pathogens. VRE detect vancomycin through a transmembrane histidine kinase, called VanS, which phosphorylates the transcription factor VanR. Once phosphorylated, VanR triggers the production of enzymes that shield the bacterial cell wall from vancomycin’s effects. Ten genetic variants of this system exist, and disrupting it could restore vancomycin’s effectiveness. However, scientists do not understand how VanS senses vancomycin. Lina Maciunas, Photis Rotsides and a team at Drexel University College of Medicine tackled this question in their recent Journal of Biological Chemistry article.
The team developed an assay to study type-B VanS in nanodiscs, which mimic the cell membrane environment for purified membrane proteins. VanS performs three functions: autophosphorylation, transferring the phosphate group to VanR and dephosphorylating VanR. Testing these functions with vancomycin, the authors found increased autophosphorylation and slightly decreased dephosphorylation, consistent with the antibiotic activating the resistance system.
They then used a modified vancomycin photoaffinity probe and detected direct binding of the VanS sensor domain in the nanodisc, as assessed by mass spectrometry. Isothermal titration calorimetry confirmed that this interaction is specific for vancomycin since VanS did not bind a similar antibiotic.
Future work will explore how other VanS variants interact with vancomycin. Detailed insight into this interaction could guide inhibitor design to block antibiotic resistance in severe infections.
Enjoy reading ASBMB Today?
Become a member to receive the print edition four times a year and the digital edition monthly.
Learn moreGet the latest from ASBMB Today
Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.
Latest in Science
Science highlights or most popular articles

How Alixorexton could transform narcolepsy treatment
A new investigational drug, alixorexton, targets the brain’s orexin system to restore wakefulness in people with narcolepsy type 1. Alkermes chemist Brian Raymer shares how molecular modeling turned a lab idea into a promising phase 3 therapy.

Phosphatases and pupils: A dual legacy
Yale professor Anton Bennett explores how protein tyrosine phosphatases shape disease, while building a legacy of mentorship that expands opportunity and fuels discovery in biochemistry and molecular biology.

Extracellular vesicles offer clues to cattle reproduction
Extracellular vesicles from pregnant cattle support embryo development better than laboratory models, highlighting their potential to improve reproductive efficiency in bovine embryo cultures. Read more about this recent MCP paper.

Proteomics reveals protein shifts in diabetic eye disease
Using proteomics, researchers identified protein changes in eye fluid that mark diabetic retinopathy progression and may serve as biomarkers for vision-threatening complications. Read more about this recent MCP paper.

Protein modifications drive lung cancer resistance
New assay enriches protein modifications in a single process, enabling detection of key changes in drug-resistant lung cancer cells that may guide future therapies.

How antigen-processing proteins shape immunity
Researchers show how components of the antigen processing machinery shape the immunopeptidome, offering insights into immune regulation and cancer biology.