Method sharpens proteome-wide view of structural changes
Protein structure underlies function, and shifts in that structure can reveal changes in cell signaling, metabolism, stress responses and genetic variation. But tracking such structural changes across the proteome remains a challenge. Luise Nagel of the University of Cologne and colleagues in Switzerland developed a method using limited proteolysis coupled with mass spectrometry, or LiP–MS, to distinguish true structural changes from confounding factors such as protein abundance. They published their findings in Molecular & Cellular Proteomics.
LiP–MS works by probing protein structures with proteinase K, or PK, a protease whose digestion patterns shift when proteins change shape. The team validated their method using samples from budding yeast, fission yeast and human cerebrospinal fluid.
To isolate structural signals, they built a framework to remove unwanted variation (RUV) from LiP–MS data. The framework outperformed other approaches by separating structural changes from effects such as protein abundance, posttranslational modifications and alternative splicing. Beyond LiP–MS, the framework could apply to other peptide-centric structural proteomics methods, including fast photochemical oxidation of proteins and molecular painting.
Enjoy reading ASBMB Today?
Become a member to receive the print edition four times a year and the digital edition monthly.
Learn moreGet the latest from ASBMB Today
Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.
Latest in Science
Science highlights or most popular articles

Exploring the link between lipids and longevity
Meng Wang will present her work on metabolism and aging at the ASBMB Annual Meeting, March 7-10, just outside of Washington, D.C.

Defining a ‘crucial gatekeeper’ of lipid metabolism
George Carman receives the Herbert Tabor Research Award at the ASBMB Annual Meeting, March 7–10, just outside of Washington, D.C.

The science of staying strong
Muscles power every movement, but they also tell the story of aging itself. Scientists are uncovering how strength fades, why some species resist it and what lifestyle and molecular clues could help preserve muscle health for life.

Bacteriophage protein could make queso fresco safer
Researchers characterized the structure and function of PlyP100, a bacteriophage protein that shows promise as a food-safe antimicrobial for preventing Listeria monocytogenes growth in fresh cheeses.

Building the blueprint to block HIV
Wesley Sundquist will present his work on the HIV capsid and revolutionary drug, Lenacapavir, at the ASBMB Annual Meeting, March 7–10, in Maryland.

Gut microbes hijack cancer pathway in high-fat diets
Researchers at the Feinstein Institutes for Medical Research found that a high-fat diet increases ammonia-producing bacteria in the gut microbiome of mice, which in turn disrupts TGF-β signaling and promotes colorectal cancer.