Method sharpens proteome-wide view of structural changes
Protein structure underlies function, and shifts in that structure can reveal changes in cell signaling, metabolism, stress responses and genetic variation. But tracking such structural changes across the proteome remains a challenge. Luise Nagel of the University of Cologne and colleagues in Switzerland developed a method using limited proteolysis coupled with mass spectrometry, or LiP–MS, to distinguish true structural changes from confounding factors such as protein abundance. They published their findings in Molecular & Cellular Proteomics.
LiP–MS works by probing protein structures with proteinase K, or PK, a protease whose digestion patterns shift when proteins change shape. The team validated their method using samples from budding yeast, fission yeast and human cerebrospinal fluid.
To isolate structural signals, they built a framework to remove unwanted variation (RUV) from LiP–MS data. The framework outperformed other approaches by separating structural changes from effects such as protein abundance, posttranslational modifications and alternative splicing. Beyond LiP–MS, the framework could apply to other peptide-centric structural proteomics methods, including fast photochemical oxidation of proteins and molecular painting.
Enjoy reading ASBMB Today?
Become a member to receive the print edition four times a year and the digital edition monthly.
Learn moreGet the latest from ASBMB Today
Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.
Latest in Science
Science highlights or most popular articles

Building the blueprint to block HIV
Wesley Sundquist will present his work on the HIV capsid and revolutionary drug, Lenacapavir, at the ASBMB Annual Meeting, March 7–10, in Maryland.

Gut microbes hijack cancer pathway in high-fat diets
Researchers at the Feinstein Institutes for Medical Research found that a high-fat diet increases ammonia-producing bacteria in the gut microbiome of mice, which in turn disrupts TGF-β signaling and promotes colorectal cancer.

Mapping fentanyl’s cellular footprint
Using a new imaging method, researchers at State University of New York at Buffalo traced fentanyl’s effects inside brain immune cells, revealing how the drug alters lipid droplets, pointing to new paths for addiction diagnostics.

Designing life’s building blocks with AI
Tanja Kortemme, a professor at the University of California, San Francisco, will discuss her research using computational biology to engineer proteins at the 2026 ASBMB Annual Meeting.

Cholesterol as a novel biomarker for Fragile X syndrome
Researchers in Quebec identified lower levels of a brain cholesterol metabolite, 24-hydroxycholesterol, in patients with fragile X syndrome, a finding that could provide a simple blood-based biomarker for understanding and managing the condition.

How lipid metabolism shapes sperm development
Researchers at Hokkaido University identify the enzyme behind a key lipid in sperm development. The findings reveal how seminolipids shape sperm formation and may inform future diagnostics and treatments for male infertility.