New mass spectrometry tool accurately identifies bacteria
Scientists identify bacterial species by analyzing their proteins using mass spectrometry, or MS. This technique first fragments proteins into smaller peptides using an enzyme called trypsin. These sequences can then be compared to references in databases. The largest MS-based studies on bacteria have focused on just a handful of species, so a team of researchers recently created a resource for mapping data onto a more diverse population of bacteria.

Miriam Abele, Armin Soleymaniniya and colleagues at the Technical University of Munich developed MS2Bac, a software system that enables bacterial identification from protein data. They published their resource in Molecular & Cellular Proteomics. MS2Bac maps tryptic peptides onto reference bacterial species or strains, achieving almost perfect accuracy for species identification. To develop this tool, the team first performed MS on the proteins from over 300 bacterial species to create a reference database. They also compared their identification method with other approaches, such as Fourier transform infrared spectroscopy, and found that MS2Bac was the most accurate.
MS2Bac can also identify specific proteins, antibiotic resistance markers. It covers many hypothetical proteins, which are not well understood, providing a basis for further functional studies. This is the first study to incorporate single-cell organisms into the ProteomicsDB database, a proteomics resource for multiomics analyses. This tool will greatly help researchers and clinicians determine bacterial species from clinically and environmentally relevant samples.
Enjoy reading ASBMB Today?
Become a member to receive the print edition four times a year and the digital edition monthly.
Learn moreGet the latest from ASBMB Today
Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.
Latest in Science
Science highlights or most popular articles

New tool matches microbial and metabolic metaproteomic data
Scientists develop a bioinformatics program that maps omics data to metabolic pathways. Read about this recent article published in Molecular & Cellular Proteomics

Meet Paul Shapiro
Learn how the JBC associate editor went from milking cows on a dairy farm to analyzing kinases in the lab.

CRISPR epigenome editor offers potential gene therapies
Scientists from the University of California, Berkeley, created a system to modify the methylation patterns in neurons. They presented their findings at ASBMB 2025.

Finding a symphony among complex molecules
MOSAIC scholar Stanna Dorn uses total synthesis to recreate rare bacterial natural products with potential therapeutic applications.

E-cigarettes drive irreversible lung damage via free radicals
E-cigarettes are often thought to be safer because they lack many of the carcinogens found in tobacco cigarettes. However, scientists recently found that exposure to e-cigarette vapor can cause severe, irreversible lung damage.

Using DNA barcodes to capture local biodiversity
Undergraduate at the University of California, Santa Barbara, leads citizen science initiative to engage the public in DNA barcoding to catalog local biodiversity, fostering community involvement in science.