New mass spectrometry tool accurately identifies bacteria
Scientists identify bacterial species by analyzing their proteins using mass spectrometry, or MS. This technique first fragments proteins into smaller peptides using an enzyme called trypsin. These sequences can then be compared to references in databases. The largest MS-based studies on bacteria have focused on just a handful of species, so a team of researchers recently created a resource for mapping data onto a more diverse population of bacteria.

Miriam Abele, Armin Soleymaniniya and colleagues at the Technical University of Munich developed MS2Bac, a software system that enables bacterial identification from protein data. They published their resource in Molecular & Cellular Proteomics. MS2Bac maps tryptic peptides onto reference bacterial species or strains, achieving almost perfect accuracy for species identification. To develop this tool, the team first performed MS on the proteins from over 300 bacterial species to create a reference database. They also compared their identification method with other approaches, such as Fourier transform infrared spectroscopy, and found that MS2Bac was the most accurate.
MS2Bac can also identify specific proteins, antibiotic resistance markers. It covers many hypothetical proteins, which are not well understood, providing a basis for further functional studies. This is the first study to incorporate single-cell organisms into the ProteomicsDB database, a proteomics resource for multiomics analyses. This tool will greatly help researchers and clinicians determine bacterial species from clinically and environmentally relevant samples.
Enjoy reading ASBMB Today?
Become a member to receive the print edition four times a year and the digital edition monthly.
Learn moreGet the latest from ASBMB Today
Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.
Latest in Science
Science highlights or most popular articles

Hope for a cure hangs on research
Amid drastic proposed cuts to biomedical research, rare disease families like Hailey Adkisson’s fight for survival and hope. Without funding, science can’t “catch up” to help the patients who need it most.

Before we’ve lost what we can’t rebuild: Hope for prion disease
Sonia Vallabh and Eric Minikel, a husband-and-wife team racing to cure prion disease, helped develop ION717, an antisense oligonucleotide treatment now in clinical trials. Their mission is personal — and just getting started.

Defeating deletions and duplications
Promising therapeutics for chromosome 15 rare neurodevelopmental disorders, including Angelman syndrome, Dup15q syndrome and Prader–Willi syndrome.

Using 'nature’s mistakes' as a window into Lafora disease
After years of heartbreak, Lafora disease families are fueling glycogen storage research breakthroughs, helping develop therapies that may treat not only Lafora but other related neurological disorders.

Cracking cancer’s code through functional connections
A machine learning–derived protein cofunction network is transforming how scientists understand and uncover relationships between proteins in cancer.

Gaze into the proteomics crystal ball
The 15th International Symposium on Proteomics in the Life Sciences symposium will be held August 17–21 in Cambridge, Massachusetts.