Journal News

Scientists identify pan-cancer biomarkers

Ecem Arpaci
By Ecem Arpaci
April 30, 2025

Genomics and transcriptomics have successfully identified many therapeutic targets for cancer. However, changes in protein abundances and their chemical modifications can also drive tumor progression. To consider this additional dimension, Guo-sheng Hu, Zao-zao Zheng, Yao-hui He, Du-chuang Wang and colleagues at Xiamen University analyzed RNA and protein data from thousands of patients with 13 cancer types. They published their findings in Molecular & Cellular Proteomics. Using bioinformatics tools, they identified upregulated and downregulated genes specific to each cancer type as well as genes common to most types analyzed.

DNA ligase encircles the double helix to repair a broken strand of DNA.
Tom Ellenberger, Washington University School of Medicine in St. Louis, via Wikimedia Commons
DNA ligase encircles the double helix to repair a broken strand of DNA.

The team discovered that tissue-specific genes were downregulated at both RNA and protein levels in all cancer types, indicating a loss of tissue identity. They showed that many genes involved in messenger RNA splicing, interferon pathway, fatty acid metabolism, and complement coagulation cascade, were dysregulated across several cancer types. The authors also found that ADH1B, the alcohol dehydrogenase that converts ethanol to acetaldehyde, was significantly downregulated in all cancer types. Conversely, the ribonucleotide regulatory subunit RRM2 was overexpressed. These proteins are examples of potential pan-cancer biomarkers, which can be used to discern cancer tissues from normal cells and potentially inform novel therapeutic strategies.

Effective cancer treatment also requires knowledge of the tumor’s stage of progression. To identify biomarkers for each tumor stage, the team analyzed how the cancer proteome changed throughout tumor progression. They used these findings to build models for tumor stage classification of several cancer types based on these biomarkers. They further constructed prognostic risk stratification models for corresponding cancer types based on dysregulated genes. They found that these models, when combined with the tumor-node-metastasis classification system, predicted cancer patient prognosis more accurately than either approach individually.

Protein-based approaches like these could be the key to better understanding cancer mechanisms and developing better treatments. Inhibitor drugs targeting RRM2 and other differentially expressed proteins identified in this study could be used to treat a range of cancer types and will be investigated further in future studies.

Enjoy reading ASBMB Today?

Become a member to receive the print edition four times a year and the digital edition monthly.

Learn more
Ecem Arpaci
Ecem Arpaci

Ecem Arpaci is a biochemistry student at Imperial College London and a research intern at Radboud University Medical Center. She is an ASBMB Today volunteer contributor.

Get the latest from ASBMB Today

Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.

Latest in Science

Science highlights or most popular articles

Mapping fentanyl’s cellular footprint
Journal News

Mapping fentanyl’s cellular footprint

Dec. 4, 2025

Using a new imaging method, researchers at State University of New York at Buffalo traced fentanyl’s effects inside brain immune cells, revealing how the drug alters lipid droplets, pointing to new paths for addiction diagnostics.

Designing life’s building blocks with AI
Profile

Designing life’s building blocks with AI

Dec. 2, 2025

Tanja Kortemme, a professor at the University of California, San Francisco, will discuss her research using computational biology to engineer proteins at the 2026 ASBMB Annual Meeting.

Cholesterol as a novel biomarker for Fragile X syndrome
Journal News

Cholesterol as a novel biomarker for Fragile X syndrome

Nov. 28, 2025

Researchers in Quebec identified lower levels of a brain cholesterol metabolite, 24-hydroxycholesterol, in patients with fragile X syndrome, a finding that could provide a simple blood-based biomarker for understanding and managing the condition.

How lipid metabolism shapes sperm development
Journal News

How lipid metabolism shapes sperm development

Nov. 26, 2025

Researchers at Hokkaido University identify the enzyme behind a key lipid in sperm development. The findings reveal how seminolipids shape sperm formation and may inform future diagnostics and treatments for male infertility.

Mass spec method captures proteins in native membranes
Journal News

Mass spec method captures proteins in native membranes

Nov. 25, 2025

Yale scientists developed a mass spec protocol that keeps proteins in their native environment, detects intact protein complexes and tracks drug binding, offering a clearer view of membrane biology.

Laser-assisted cryoEM method preserves protein structure
Journal News

Laser-assisted cryoEM method preserves protein structure

Nov. 25, 2025

University of Wisconsin–Madison researchers devised a method that prevents protein compaction during cryoEM prep, restoring natural structure for mass spec studies. The approach could expand high-resolution imaging to more complex protein systems.