Scientists identify pan-cancer biomarkers
Genomics and transcriptomics have successfully identified many therapeutic targets for cancer. However, changes in protein abundances and their chemical modifications can also drive tumor progression. To consider this additional dimension, Guo-sheng Hu, Zao-zao Zheng, Yao-hui He, Du-chuang Wang and colleagues at Xiamen University analyzed RNA and protein data from thousands of patients with 13 cancer types. They published their findings in Molecular & Cellular Proteomics. Using bioinformatics tools, they identified upregulated and downregulated genes specific to each cancer type as well as genes common to most types analyzed.
The team discovered that tissue-specific genes were downregulated at both RNA and protein levels in all cancer types, indicating a loss of tissue identity. They showed that many genes involved in messenger RNA splicing, interferon pathway, fatty acid metabolism, and complement coagulation cascade, were dysregulated across several cancer types. The authors also found that ADH1B, the alcohol dehydrogenase that converts ethanol to acetaldehyde, was significantly downregulated in all cancer types. Conversely, the ribonucleotide regulatory subunit RRM2 was overexpressed. These proteins are examples of potential pan-cancer biomarkers, which can be used to discern cancer tissues from normal cells and potentially inform novel therapeutic strategies.
Effective cancer treatment also requires knowledge of the tumor’s stage of progression. To identify biomarkers for each tumor stage, the team analyzed how the cancer proteome changed throughout tumor progression. They used these findings to build models for tumor stage classification of several cancer types based on these biomarkers. They further constructed prognostic risk stratification models for corresponding cancer types based on dysregulated genes. They found that these models, when combined with the tumor-node-metastasis classification system, predicted cancer patient prognosis more accurately than either approach individually.
Protein-based approaches like these could be the key to better understanding cancer mechanisms and developing better treatments. Inhibitor drugs targeting RRM2 and other differentially expressed proteins identified in this study could be used to treat a range of cancer types and will be investigated further in future studies.
Enjoy reading ASBMB Today?
Become a member to receive the print edition four times a year and the digital edition monthly.
Learn moreGet the latest from ASBMB Today
Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.
Latest in Science
Science highlights or most popular articles

Mining microbes for rare earth solutions
Joseph Cotruvo, Jr., will receive the ASBMB Mildred Cohn Young Investigator Award at the ASBMB Annual Meeting, March 7–10, just outside of Washington, D.C.

Fueling healthier aging, connecting metabolism stress and time
Biochemist Melanie McReynolds investigates how metabolism and stress shape the aging process. Her research on NAD+, a molecule central to cellular energy, reveals how maintaining its balance could promote healthier, longer lives.

Mapping proteins, one side chain at a time
Roland Dunbrack Jr. will receive the ASBMB DeLano Award for Computational Biosciences at the ASBMB Annual Meeting, March 7–10, just outside of Washington, D.C.

Exploring the link between lipids and longevity
Meng Wang will present her work on metabolism and aging at the ASBMB Annual Meeting, March 7-10, just outside of Washington, D.C.

Defining a ‘crucial gatekeeper’ of lipid metabolism
George Carman receives the Herbert Tabor Research Award at the ASBMB Annual Meeting, March 7–10, just outside of Washington, D.C.

The science of staying strong
Muscles power every movement, but they also tell the story of aging itself. Scientists are uncovering how strength fades, why some species resist it and what lifestyle and molecular clues could help preserve muscle health for life.