Journal News

Omega-3 fats linked to healthy aging and improved heart metabolism

Naushin Raheema
By Naushin Raheema
Aug. 1, 2025

A study at the University of Iowa conducted by the Brandon Davies Laboratory recently showed that a high-fat, Western diet reduces lifespan, while a diet high in polyunsaturated and omega-3 fatty acids increases cardiac triglyceride uptake and improves insulin sensitivity. The researchers published their work in the Journal of Lipid Research.

The incidence of age-related obesity is rising within the global population along with the intake of high-fat foods. Previous research highlighted that age-related changes in body weight, fat distribution, insulin sensitivity and triglyceride metabolism can drive chronic metabolic conditions, including obesity, Type 2 diabetes and hyperlipidemia.

To combat this global health issue, researchers must understand how triglyceride metabolism changes over time.

“We're interested in studying triglyceride metabolism, tracing the journey from the point where triglycerides are consumed, how they enter the bloodstream, and ultimately where they are stored or used for energy.” Kathryn Spitler, lead author and a research associate at UI, said.

The research team explored how different dietary fats influence metabolic health and whether these findings in mice could be relevant for human health.

While there is significant knowledge on triglyceride and fatty acid metabolism in humans, there is a lack of information specifically addressing how aging impacts this process. To close this gap in knowledge, they divided mice into three groups: a control group fed a standard diet, a group fed a high-fat diet rich in saturated fats and a group fed a high-fat diet rich in omega-3 fatty acids, commonly found in fish oil.

“Unlike saturated fats, omega-3 fats are often associated with potential health benefits.” Spitler said. “By comparing these groups, we sought to understand whether the type of fat consumed influences metabolic health during aging.”

In humans, when consuming a high-fat meal, triglyceride levels in the blood rise temporarily and then decrease as the body absorbs the fat. However, with age, the rate at which tissues absorb fat decreases, causing triglyceride levels to remain elevated in the blood for longer after a meal.

“When we eat fatty foods, our digestive tract packages them into these balls of fat called chylomicrons that will circulate throughout our bloodstream. and These circulating chylomicrons provide triglycerides as a source for energy to our highly metabolic tissues or our bodies store triglycerides in adipose tissue,” Spitler said.

They showed that as age increases, tissues absorb fat less efficiently, which can lead to harmful side effects such as increased risk of heart disease, stroke and pancreatitis.

The Davies team also found that mice fed a diet high in fat derived from fish oil, gained weight, but demonstrated increased tolerance to insulin.  These mice showed enhanced cardiac triglyceride uptake, suggesting more efficient fat processing. In contrast, the mice on the Western diet had impaired glucose tolerance and a lower ability to respond to insulin while having higher fat accumulation in non-adipose tissues, which can be linked to metabolic complications.

The researchers’ future directions will explore how omega-3 fats alter cellular signaling involved in insulin tolerance and cardiac triglyceride uptake.

These findings could have important implications for promoting healthier aging in humans, particularly through dietary interventions that emphasize omega-3 fats. Understanding how different fats affect metabolism over time may help prevent age-related diseases like Type 2 diabetes and cardiovascular disease.

Enjoy reading ASBMB Today?

Become a member to receive the print edition four times a year and the digital edition monthly.

Learn more
Naushin Raheema
Naushin Raheema

Naushin Raheema is a science communicator and writer. She writes articles on health, space, genetics and the environment. She writes poems and does art journaling in her free time.
 

Get the latest from ASBMB Today

Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.

Latest in Science

Science highlights or most popular articles

ApoA1 reduce atherosclerotic plaques via cell death pathway
Journal News

ApoA1 reduce atherosclerotic plaques via cell death pathway

Oct. 1, 2025

Researchers show that ApoA1, a key HDL protein, helps reduce plaque and necrotic core formation in atherosclerosis by modulating Bim-driven macrophage death. The findings reveal new insights into how ApoA1 protects against heart disease.

Omega-3 lowers inflammation, blood pressure in obese adults
Journal News

Omega-3 lowers inflammation, blood pressure in obese adults

Oct. 1, 2025

A randomized study shows omega-3 supplements reduce proinflammatory chemokines and lower blood pressure in obese adults, furthering the understanding of how to modulate cardiovascular disease risk.

AI unlocks the hidden grammar of gene regulation
Feature

AI unlocks the hidden grammar of gene regulation

Sept. 30, 2025

Using fruit flies and artificial intelligence, Julia Zeitlinger’s lab is decoding genome patterns — revealing how transcription factors and nucleosomes control gene expression, pushing biology toward faster, more precise discoveries.

Zebrafish model links low omega-3s to eye abnormalities
Journal News

Zebrafish model links low omega-3s to eye abnormalities

Sept. 24, 2025

Researchers at the University of Colorado Anschutz developed a zebrafish model to show that low maternal docosahexaenoic acid can disrupt embryo eye development and immune gene expression, offering a tool to study nutrition in neurodevelopment.

Top reviewers at ASBMB journals
Observance

Top reviewers at ASBMB journals

Sept. 19, 2025

Editors recognize the heavy-lifters and rising stars during Peer Review Week.

Teaching AI to listen
Essay

Teaching AI to listen

Sept. 18, 2025

A computational medicine graduate student reflects on building natural language processing tools that extract meaning from messy clinical notes — transforming how we identify genetic risk while redefining what it means to listen in science.