Journal News

Proteomic variation in heart tissues

Ecem Arpaci
By Ecem Arpaci
June 17, 2025

Induced pluripotent stem cells, or iPSCs, can be used to model tissues and disorders, such as heart diseases. However, the human heart is complex, with several regions and cell types. Therefore, analyzing single cardiac cells can be challenging.

Lizhuo Ai, Aleksandra Binek and Vladimir Zhemkov of the Cedars-Sinai Medical Center and a team in the U.S. used this approach to analyze heart cells throughout various stages of development. They published their findings in Molecular & Cellular Proteomics. The authors differentiated iPSCs into cardiomyocytes, the muscle cells of the heart, and analyzed their proteome at various time points using mass spectrometry.

Berkshire Community College Bioscience Image Library

The team detected proteomic differences between groups of iPSC-derived cardiomyocytes, or iCMs, at the end of their three-week differentiation period, suggesting that they had developed into multiple cell subtypes. Many differentially expressed proteins between two of these subtypes functioned in extracellular vesicles, called exosomes, which transport biomolecules such as DNA and proteins to other cells. They also compared iCMs to those isolated from adult human hearts, or aCMs. They found the two cell types shared many proteins involved in muscle function, but that aCMs had a higher proportion of mitochondrial proteins, suggesting that iCMs are metabolically immature.

Furthermore, detailed analysis revealed that a few human adult heart cells expressed markers that traditionally identify heart and brain cells, which may represent a newly discovered cell type. These results could mean that heart cells are more diverse than scientists originally thought and could underlie some functions such as exosome formation. The ability of iCMs to recreate much of the cardiomyocyte proteome, combined with the diversity of tissues they produce, make iPSCs appealing candidates for studying and treating human heart diseases.

Enjoy reading ASBMB Today?

Become a member to receive the print edition four times a year and the digital edition monthly.

Learn more
Ecem Arpaci
Ecem Arpaci

Ecem Arpaci is a biochemistry student at Imperial College London and a research intern at Radboud University Medical Center. She is an ASBMB Today volunteer contributor.

Get the latest from ASBMB Today

Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.

Latest in Science

Science highlights or most popular articles

Cholesterol as a novel biomarker for Fragile X syndrome
Journal News

Cholesterol as a novel biomarker for Fragile X syndrome

Nov. 28, 2025

Researchers in Quebec identified lower levels of a brain cholesterol metabolite, 24-hydroxycholesterol, in patients with fragile X syndrome, a finding that could provide a simple blood-based biomarker for understanding and managing the condition.

How lipid metabolism shapes sperm development
Journal News

How lipid metabolism shapes sperm development

Nov. 26, 2025

Researchers at Hokkaido University identify the enzyme behind a key lipid in sperm development. The findings reveal how seminolipids shape sperm formation and may inform future diagnostics and treatments for male infertility.

Mass spec method captures proteins in native membranes
Journal News

Mass spec method captures proteins in native membranes

Nov. 25, 2025

Yale scientists developed a mass spec protocol that keeps proteins in their native environment, detects intact protein complexes and tracks drug binding, offering a clearer view of membrane biology.

Laser-assisted cryoEM method preserves protein structure
Journal News

Laser-assisted cryoEM method preserves protein structure

Nov. 25, 2025

University of Wisconsin–Madison researchers devised a method that prevents protein compaction during cryoEM prep, restoring natural structure for mass spec studies. The approach could expand high-resolution imaging to more complex protein systems.

Method sharpens proteome-wide view of structural changes
Journal News

Method sharpens proteome-wide view of structural changes

Nov. 25, 2025

Researchers developed a method that improves limited proteolysis coupled with mass spectrometry, separating true changes from abundance or splicing effects.

Discoveries made possible by DNA
Feature

Discoveries made possible by DNA

Nov. 24, 2025

The discovery of DNA’s double helix revealed how genetic information is stored, copied and expressed. Revisit that breakthrough and traces how it laid the foundation for modern molecular biology, genomics and biotechnology.