Proteomic variation in heart tissues
Induced pluripotent stem cells, or iPSCs, can be used to model tissues and disorders, such as heart diseases. However, the human heart is complex, with several regions and cell types. Therefore, analyzing single cardiac cells can be challenging.
Lizhuo Ai, Aleksandra Binek and Vladimir Zhemkov of the Cedars-Sinai Medical Center and a team in the U.S. used this approach to analyze heart cells throughout various stages of development. They published their findings in Molecular & Cellular Proteomics. The authors differentiated iPSCs into cardiomyocytes, the muscle cells of the heart, and analyzed their proteome at various time points using mass spectrometry.
The team detected proteomic differences between groups of iPSC-derived cardiomyocytes, or iCMs, at the end of their three-week differentiation period, suggesting that they had developed into multiple cell subtypes. Many differentially expressed proteins between two of these subtypes functioned in extracellular vesicles, called exosomes, which transport biomolecules such as DNA and proteins to other cells. They also compared iCMs to those isolated from adult human hearts, or aCMs. They found the two cell types shared many proteins involved in muscle function, but that aCMs had a higher proportion of mitochondrial proteins, suggesting that iCMs are metabolically immature.
Furthermore, detailed analysis revealed that a few human adult heart cells expressed markers that traditionally identify heart and brain cells, which may represent a newly discovered cell type. These results could mean that heart cells are more diverse than scientists originally thought and could underlie some functions such as exosome formation. The ability of iCMs to recreate much of the cardiomyocyte proteome, combined with the diversity of tissues they produce, make iPSCs appealing candidates for studying and treating human heart diseases.
Enjoy reading ASBMB Today?
Become a member to receive the print edition four times a year and the digital edition monthly.
Learn moreGet the latest from ASBMB Today
Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.
Latest in Science
Science highlights or most popular articles

Protein modifications drive lung cancer resistance
New assay enriches protein modifications in a single process, enabling detection of key changes in drug-resistant lung cancer cells that may guide future therapies.

How antigen-processing proteins shape immunity
Researchers show how components of the antigen processing machinery shape the immunopeptidome, offering insights into immune regulation and cancer biology.

New chemical strategy boosts accuracy in proteomics
Researchers develop a methylamine-based method that nearly eliminates peptide overlabeling in proteomics, improving accuracy in protein identification and quantitation.

Understanding the roles of extracellular matrix and vesicles in valvular disease
MOSAIC scholar Cassandra Clift uses mass spectrometry and multiomics to study cardiovascular calcification and collagen dysregulation, bridging her background in bioengineering and biology to investigate extracellular vesicles and heart disease.

Lipid profiles reveal sex differences in type 2 diabetes
Researchers explored the lipid profiles of individuals with type 2 diabetes and identified potentially useful lipid biomarkers for this condition.

Serum lipids may predict early diabetes risk
Researchers found that levels of two key fatty acids may predict worsening tolerance for glucose, independent of body fat and insulin levels. In turn, these fatty acids may serve as early T2D biomarkers.