How signals shape DNA via gene regulation
Chromatin, the complex of DNA and proteins within the nucleus, plays a central role in gene expression and cellular function. However, studying chromatin-bound proteins has been challenging due to their intricate interactions with DNA.

To address this, researchers at Shanghai Jiao Tong University and Heidelberg University developed an advanced chromatin isolation technique that preserves protein–DNA interactions. They then applied mass spectrometry and bioinformatics analysis to examine how signaling pathways alter the chromatin-bound proteome. They published their work in Molecular & Cellular Proteomics.
The researchers found that different signaling cues, such as stress or growth factors, significantly alter chromatin composition by affecting transcription factors, chromatin remodelers and DNA repair proteins. These changes influence gene expression and cellular responses.
The findings emphasize how external signals regulate DNA-bound proteins, offering new insights into diseases driven by dysregulated signaling, such as cancer. This work opens new possibilities for developing therapies that target specific protein–DNA interactions.
This chromatin profiling technique offers a valuable tool for investigating gene regulation and has the potential to inform precision medicine strategies.
Enjoy reading ASBMB Today?
Become a member to receive the print edition four times a year and the digital edition monthly.
Learn moreGet the latest from ASBMB Today
Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.
Latest in Science
Science highlights or most popular articles

Zebrafish model links low omega-3s to eye abnormalities
Researchers at the University of Colorado Anschutz developed a zebrafish model to show that low maternal docosahexaenoic acid can disrupt embryo eye development and immune gene expression, offering a tool to study nutrition in neurodevelopment.

Top reviewers at ASBMB journals
Editors recognize the heavy-lifters and rising stars during Peer Review Week.

Teaching AI to listen
A computational medicine graduate student reflects on building natural language processing tools that extract meaning from messy clinical notes — transforming how we identify genetic risk while redefining what it means to listen in science.

Early lipid changes drive retinal degeneration in Zellweger spectrum disorder
Lipid profiling in a rare disease mouse model reveals metabolic shifts and inflammation in the retinal pigment epithelium — offering promising biomarker leads to combat blindness.

How sugars shape Marfan syndrome
Research from the University of Georgia shows that Marfan syndrome–associated fibrillin-1 mutations disrupt O glycosylation, revealing unexpected changes that may alter the protein's function in the extracellular matrix.

What’s in a diagnosis?
When Jessica Foglio’s son Ben was first diagnosed with cerebral palsy, the label didn’t feel right. Whole exome sequencing revealed a rare disorder called Salla disease. Now Jessica is building community and driving research for answers.