How signals shape DNA via gene regulation
Chromatin, the complex of DNA and proteins within the nucleus, plays a central role in gene expression and cellular function. However, studying chromatin-bound proteins has been challenging due to their intricate interactions with DNA.
To address this, researchers at Shanghai Jiao Tong University and Heidelberg University developed an advanced chromatin isolation technique that preserves protein–DNA interactions. They then applied mass spectrometry and bioinformatics analysis to examine how signaling pathways alter the chromatin-bound proteome. They published their work in Molecular & Cellular Proteomics.
The researchers found that different signaling cues, such as stress or growth factors, significantly alter chromatin composition by affecting transcription factors, chromatin remodelers and DNA repair proteins. These changes influence gene expression and cellular responses.
The findings emphasize how external signals regulate DNA-bound proteins, offering new insights into diseases driven by dysregulated signaling, such as cancer. This work opens new possibilities for developing therapies that target specific protein–DNA interactions.
This chromatin profiling technique offers a valuable tool for investigating gene regulation and has the potential to inform precision medicine strategies.
Enjoy reading ASBMB Today?
Become a member to receive the print edition four times a year and the digital edition monthly.
Learn moreGet the latest from ASBMB Today
Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.
Latest in Science
Science highlights or most popular articles

Cholesterol as a novel biomarker for Fragile X syndrome
Researchers in Quebec identified lower levels of a brain cholesterol metabolite, 24-hydroxycholesterol, in patients with fragile X syndrome, a finding that could provide a simple blood-based biomarker for understanding and managing the condition.

How lipid metabolism shapes sperm development
Researchers at Hokkaido University identify the enzyme behind a key lipid in sperm development. The findings reveal how seminolipids shape sperm formation and may inform future diagnostics and treatments for male infertility.

Mass spec method captures proteins in native membranes
Yale scientists developed a mass spec protocol that keeps proteins in their native environment, detects intact protein complexes and tracks drug binding, offering a clearer view of membrane biology.

Laser-assisted cryoEM method preserves protein structure
University of Wisconsin–Madison researchers devised a method that prevents protein compaction during cryoEM prep, restoring natural structure for mass spec studies. The approach could expand high-resolution imaging to more complex protein systems.

Method sharpens proteome-wide view of structural changes
Researchers developed a method that improves limited proteolysis coupled with mass spectrometry, separating true changes from abundance or splicing effects.

Discoveries made possible by DNA
The discovery of DNA’s double helix revealed how genetic information is stored, copied and expressed. Revisit that breakthrough and traces how it laid the foundation for modern molecular biology, genomics and biotechnology.