Journal News

A game changer in cancer kinase target profiling

Seema Nath
Aug. 19, 2025

Kinases are enzymes that regulate cell signaling by adding phosphate groups in cell signaling, and their dysregulation is linked to cancer progression. Targeting kinases with small-molecule inhibitors is a promising therapeutic strategy but developing selective inhibitors to prevent unintended off-target effects remains challenging due to structural similarities among kinases. In a recent study, published in Molecular & Cellular Proteomics, Wouter van Bergen of the University of Utrecht, The Netherlands, introduces a novel technique that improves kinase target identification, to help to enhance drug specificity and reduce unintended interactions.

Unlike traditional methods, this study used phosphonate affinity tags, which are chemical probes that mimic phosphate groups, for monitoring site-specific drug binding. These tags facilitate the distinction between closely related kinases, helping to reveal off-target effects. Using a combination of cell biology, biochemical reactions and proteomics, the group demonstrated that phosphonate affinity tags are a useful tool for high-specificity kinase inhibitor profiling. In human lung carcinoma cells treated with a tyrosine kinase inhibitor, they used covalent linkage formation between a broad-spectrum kinase targeting activity-based probe and the phosphonate tag, followed by proteomic analysis, to identify effective competition between the inhibitor, a key indicator of target engagement. This approach also uncovered previously unknown off-target interactions, confirming its sensitivity and accuracy.

By refining kinase inhibitor profiling, this technique opens the door to more precise cancer therapies. It could support personalized medicine approaches by tailoring treatments to individual patients, improving both safety and efficacy.

Enjoy reading ASBMB Today?

Become a member to receive the print edition four times a year and the digital edition monthly.

Learn more
Seema Nath

Seema Nath is a postdoctoral research fellow at the University of Texas Health Science Center at San Antonio. She is an ASBMB volunteer contributor.

Get the latest from ASBMB Today

Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.

Latest in Science

Science highlights or most popular articles

Mapping the placenta’s hormone network
Journal News

Mapping the placenta’s hormone network

Oct. 21, 2025

Study uncovers how the placenta actively metabolizes not only glucocorticoids but also novel androgens and progesterones, reshaping our understanding of pregnancy and its complications.

Biochemists and molecular biologists sweep major 2025 honors
News

Biochemists and molecular biologists sweep major 2025 honors

Oct. 20, 2025

Recent Nobel, MacArthur and Kimberly Prize honorees highlight the power of biochemistry and molecular biology to drive discovery, including immune tolerance, vaccine design and metabolic disease, and to advance medicine and improve human health.

Spider-like proteins spin defenses to control immunity
News

Spider-like proteins spin defenses to control immunity

Oct. 17, 2025

Researchers from Utrecht University discovered two distinct binding modes of a spider-shaped immune inhibitor found in serum.

A biological camera: How AI is transforming retinal imaging
Feature

A biological camera: How AI is transforming retinal imaging

Oct. 15, 2025

AI is helping clinicians see a more detailed view into the eye, allowing them to detect diabetic retinopathy earlier and expand access through tele-ophthalmology. These advances could help millions see a clearer future.

AI in the lab: The power of smarter questions
Essay

AI in the lab: The power of smarter questions

Oct. 14, 2025

An assistant professor discusses AI's evolution from a buzzword to a trusted research partner. It helps streamline reviews, troubleshoot code, save time and spark ideas, but its success relies on combining AI with expertise and critical thinking.

Training AI to uncover novel antimicrobials
Feature

Training AI to uncover novel antimicrobials

Oct. 9, 2025

Antibiotic resistance kills millions, but César de la Fuente’s lab is fighting back. By pairing AI with human insight, researchers are uncovering hidden antimicrobial peptides across the tree of life with a 93% success rate against deadly pathogens.