Journal News

Mass spec method captures proteins in native membranes

ASBMB Staff
By ASBMB Staff
Nov. 25, 2025

Cell function depends on how proteins and lipids are organized in native membranes, but studying those interactions has been difficult. Most approaches require extracting membrane proteins, or MPs, and stabilizing them in detergents that disrupt native interactions.

Illustration of the mitochondrial adenosine triphosphate synthase membrane protein.

In a recent Molecular & Cellular Proteomics article, Wonhyeuk Jung and colleagues at Yale University and the University of Nebraska–Lincoln developed a protocol using supercharger-assisted prequadrupole activation and mass spectrometry. The approach combines collision-induced and electron-capture dissociation to fragment ions and detect proteins directly in intact membranes.

Applying this method to E. coli membranes, the team detected diverse protein complexes preserved in their natural state and demonstrated that the platform can track drug binding to antibiotic targets. They plan to refine the method by adding biochemical interventions to study any membrane protein directly in its native environment.

Enjoy reading ASBMB Today?

Become a member to receive the print edition four times a year and the digital edition monthly.

Learn more
ASBMB Staff
ASBMB Staff

This article was written by a member or members of the American Society for Biochemistry and Molecular Biology staff.

Get the latest from ASBMB Today

Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.

Latest in Science

Science highlights or most popular articles

Laser-assisted cryoEM method preserves protein structure
Journal News

Laser-assisted cryoEM method preserves protein structure

Nov. 25, 2025

University of Wisconsin–Madison researchers devised a method that prevents protein compaction during cryoEM prep, restoring natural structure for mass spec studies. The approach could expand high-resolution imaging to more complex protein systems.

Method sharpens proteome-wide view of structural changes
Journal News

Method sharpens proteome-wide view of structural changes

Nov. 25, 2025

Researchers developed a method that improves limited proteolysis coupled with mass spectrometry, separating true changes from abundance or splicing effects.

Discoveries made possible by DNA
Feature

Discoveries made possible by DNA

Nov. 24, 2025

The discovery of DNA’s double helix revealed how genetic information is stored, copied and expressed. Revisit that breakthrough and traces how it laid the foundation for modern molecular biology, genomics and biotechnology.

Unraveling the language of histones
Profile

Unraveling the language of histones

Nov. 20, 2025

Philip Cole presented his research on how posttranslational modifications to histones are involved in gene expression and how these modifications could be therapeutically targeted to treat diseases like cancer.

How Alixorexton could transform narcolepsy treatment
News

How Alixorexton could transform narcolepsy treatment

Nov. 18, 2025

A new investigational drug, alixorexton, targets the brain’s orexin system to restore wakefulness in people with narcolepsy type 1. Alkermes chemist Brian Raymer shares how molecular modeling turned a lab idea into a promising phase 3 therapy.

Phosphatases and pupils: A dual legacy
Profile

Phosphatases and pupils: A dual legacy

Nov. 13, 2025

Yale professor Anton Bennett explores how protein tyrosine phosphatases shape disease, while building a legacy of mentorship that expands opportunity and fuels discovery in biochemistry and molecular biology.