Journal News

How bacteria fight back against promising antimicrobial peptide

Emily Ulrich
May 15, 2025

Antimicrobial peptides have potential in antibiotic drug development, including possible uses in combination with other antibiotics for infections that are difficult to treat. Scientists have shown that the peptide TAT-RasGAP317-326, originally developed as an anticancer compound, inhibits E. coli and Staphylococcus aureus, among other bacteria. The peptide contains residues 317-326 of the Ras GTPase-activating protein, or RasGAP, with an attached N-terminal cell-penetrating sequence from the HIV transactivator of transcription, or TAT, protein, and will be called TAT-RasGAP in this article for simplicity. Maria Georgieva at the University of Lausanne Hospital Center and a team in Switzerland performed a resistance selection experiment over 20 passages to obtain an E. coli strain resistant to TAT-RasGAP to identify mutations that could elucidate this peptide’s mechanism of action. In a recent Journal of Biological Chemistry article, they showed that a mutation in BamA, an outer membrane protein critical for the insertion of other membrane proteins, helped block the peptide’s antimicrobial activity.

Illustration of a cross section of an E. coli cell. The cell wall is shown in green, the genome in yellow, DNA-binding proteins in tan and orange and ribosomes in purple.
David S. Goodsell, RCSB Protein Data Bank, via Wikimedia Commons
Illustration of a cross section of an E. coli cell. The cell wall is shown in green, the genome in yellow, DNA-binding proteins in tan and orange and ribosomes in purple.

The authors traced the mutation that protects E. coli from TAT-RasGAP to a negatively charged loop in BamA that extends into the extracellular space. The mutation changes a residue from a negative to a neutral charge. The authors hypothesized that the positively charged TAT-RasGAP may interact with this negatively charged loop for cell entry, and a negative-to-neutral mutation could have developed in the resistant strain to block this electrostatic interaction. Modeling and molecular dynamics indicated that BamA’s negatively charged loop likely interacts with the peptide.

However, further experiments showed that TAT-RasGAP does not produce the same  changes as known BamA inhibitors based on bacterial morphology viewed by brightfield microscopy and outer membrane protein quantification, indicating that BamA is unlikely inhibited by TAT-RasGAP. Future experiments will help resolve the full mechanism of action for TAT-RasGAP and could lead to novel antibiotics.

Enjoy reading ASBMB Today?

Become a member to receive the print edition four times a year and the digital edition monthly.

Learn more
Emily Ulrich

Emily Ulrich is the ASBMB’s science editor.

Get the latest from ASBMB Today

Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.

Latest in Science

Science highlights or most popular articles

Before we’ve lost what we can’t rebuild: Hope for prion disease
Feature

Before we’ve lost what we can’t rebuild: Hope for prion disease

July 15, 2025

Sonia Vallabh and Eric Minikel, a husband-and-wife team racing to cure prion disease, helped develop ION717, an antisense oligonucleotide treatment now in clinical trials. Their mission is personal — and just getting started.

Defeating deletions and duplications
News

Defeating deletions and duplications

July 11, 2025

Promising therapeutics for chromosome 15 rare neurodevelopmental disorders, including Angelman syndrome, Dup15q syndrome and Prader–Willi syndrome.

Using 'nature’s mistakes' as a window into Lafora disease
Feature

Using 'nature’s mistakes' as a window into Lafora disease

July 10, 2025

After years of heartbreak, Lafora disease families are fueling glycogen storage research breakthroughs, helping develop therapies that may treat not only Lafora but other related neurological disorders.

Cracking cancer’s code through functional connections
News

Cracking cancer’s code through functional connections

July 2, 2025

A machine learning–derived protein cofunction network is transforming how scientists understand and uncover relationships between proteins in cancer.

Gaze into the proteomics crystal ball
In-person Conference

Gaze into the proteomics crystal ball

July 1, 2025

The 15th International Symposium on Proteomics in the Life Sciences symposium will be held August 17–21 in Cambridge, Massachusetts.

Bacterial enzyme catalyzes body odor compound formation
Journal News

Bacterial enzyme catalyzes body odor compound formation

June 27, 2025

Researchers identify a skin-resident Staphylococcus hominis dipeptidase involved in creating sulfur-containing secretions. Read more about this recent Journal of Biological Chemistry paper.