Journal News

How bacteria fight back against promising antimicrobial peptide

Emily Ulrich
May 15, 2025

Antimicrobial peptides have potential in antibiotic drug development, including possible uses in combination with other antibiotics for infections that are difficult to treat. Scientists have shown that the peptide TAT-RasGAP317-326, originally developed as an anticancer compound, inhibits E. coli and Staphylococcus aureus, among other bacteria. The peptide contains residues 317-326 of the Ras GTPase-activating protein, or RasGAP, with an attached N-terminal cell-penetrating sequence from the HIV transactivator of transcription, or TAT, protein, and will be called TAT-RasGAP in this article for simplicity. Maria Georgieva at the University of Lausanne Hospital Center and a team in Switzerland performed a resistance selection experiment over 20 passages to obtain an E. coli strain resistant to TAT-RasGAP to identify mutations that could elucidate this peptide’s mechanism of action. In a recent Journal of Biological Chemistry article, they showed that a mutation in BamA, an outer membrane protein critical for the insertion of other membrane proteins, helped block the peptide’s antimicrobial activity.

Illustration of a cross section of an E. coli cell. The cell wall is shown in green, the genome in yellow, DNA-binding proteins in tan and orange and ribosomes in purple.
David S. Goodsell, RCSB Protein Data Bank, via Wikimedia Commons
Illustration of a cross section of an E. coli cell. The cell wall is shown in green, the genome in yellow, DNA-binding proteins in tan and orange and ribosomes in purple.

The authors traced the mutation that protects E. coli from TAT-RasGAP to a negatively charged loop in BamA that extends into the extracellular space. The mutation changes a residue from a negative to a neutral charge. The authors hypothesized that the positively charged TAT-RasGAP may interact with this negatively charged loop for cell entry, and a negative-to-neutral mutation could have developed in the resistant strain to block this electrostatic interaction. Modeling and molecular dynamics indicated that BamA’s negatively charged loop likely interacts with the peptide.

However, further experiments showed that TAT-RasGAP does not produce the same  changes as known BamA inhibitors based on bacterial morphology viewed by brightfield microscopy and outer membrane protein quantification, indicating that BamA is unlikely inhibited by TAT-RasGAP. Future experiments will help resolve the full mechanism of action for TAT-RasGAP and could lead to novel antibiotics.

Enjoy reading ASBMB Today?

Become a member to receive the print edition four times a year and the digital edition monthly.

Learn more
Emily Ulrich

Emily Ulrich is the ASBMB’s science editor.

Get the latest from ASBMB Today

Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.

Latest in Science

Science highlights or most popular articles

Neurobiology of stress and substance use
Profile

Neurobiology of stress and substance use

June 19, 2025

MOSAIC scholar and proud Latino, Bryan Cruz of Scripps Research Institute studies the neurochemical origins of PTSD-related alcohol use using a multidisciplinary approach.

Pesticide disrupts neuronal potentiation
Journal News

Pesticide disrupts neuronal potentiation

June 17, 2025

New research reveals how deltamethrin may disrupt brain development by altering the protein cargo of brain-derived extracellular vesicles. Read more about this recent Molecular & Cellular Proteomics article.

A look into the rice glycoproteome
Journal News

A look into the rice glycoproteome

June 17, 2025

Researchers mapped posttranslational modifications in Oryza sativa, revealing hundreds of alterations tied to key plant processes. Read more about this recent Molecular & Cellular Proteomics paper.

Proteomic variation in heart tissues
Journal News

Proteomic variation in heart tissues

June 17, 2025

By tracking protein changes in stem cell–derived heart cells, researchers from Cedars-Sinai uncovered surprising diversity — including a potential new cell type — that could reshape how we study and treat heart disease.

Parsing plant pigment pathways
Webinar

Parsing plant pigment pathways

June 13, 2025

Erich Grotewold of Michigan State University, an ASBMB Breakthroughs speaker, discusses his work on the genetic regulation of flavonoid biosynthesis.

Calcium channel linked to cancer drug resistance
Journal News

Calcium channel linked to cancer drug resistance

June 12, 2025

Researchers discover a protein associated with carboplatin-resistant retinoblastoma, suggesting this protein could be a promising therapeutic target. Read more about this recent Journal of Biological Chemistry paper.