Journal News

Influenza gets help from gum disease bacteria

Emily Ulrich
May 15, 2025

Scientists know that bacteria in the respiratory tract, such as specific Staphylococcus aureus strains, can boost influenza infectivity by supplying a protease that cleaves the viral spike protein hemagglutinin, a step that facilitates viral host entry. The bacterium Porphyromonas gingivalis causes periodontal disease and has been associated with severe cases of influenza, but scientists have not determined whether this connection involves hemagglutinin cleavage by a specific enzyme. In a recent article from the Journal of Biological Chemistry, Noriaki Kamio and a team at Nihon University in Japan investigated the link between P. gingivalis and influenza infectivity.

The authors used immunofluorescence microscopy and a canine kidney cell line to determine that an element in the supernatant of P. gingivalis culture enhanced cell-to-cell spread of influenza, similar to cells treated with trypsin protease. The researchers hypothesized that the supernatant contains a protease that can cleave viral hemagglutinin. They suspected that the gingipain cysteine proteases Rgp and Kgp produced by P. gingivalis could perform this function.

They tested the involvement of each protease by adding individual inhibitors of Rgp and Kgp to the supernatant and found that only the Rgp inhibitor blocked hemagglutinin cleavage. In addition, the authors showed that supernatant from a P. gingivalis strain lacking Rgp could not cleave hemagglutinin. They also performed a plaque assay to measure viral titers and found that the viral concentration was lower when cells were incubated with the bacterial strain missing Rgp. Therefore, they concluded that Rgp likely cleaves hemagglutinin and enhances viral replication.

The authors suggested that future studies using human respiratory cells and animal models will help unravel details of how P. gingivalis strengthens influenza infectivity. These results may help scientists pinpoint proteins in other bacteria that may promote respiratory viral spread.

Enjoy reading ASBMB Today?

Become a member to receive the print edition four times a year and the digital edition monthly.

Learn more
Emily Ulrich

Emily Ulrich is ASBMB’s former science editor.

Get the latest from ASBMB Today

Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.

Latest in Science

Science highlights or most popular articles

Mining microbes for rare earth solutions
Award

Mining microbes for rare earth solutions

Jan. 14, 2026

Joseph Cotruvo, Jr., will receive the ASBMB Mildred Cohn Young Investigator Award at the ASBMB Annual Meeting, March 7–10, just outside of Washington, D.C.

Fueling healthier aging, connecting metabolism stress and time
Feature

Fueling healthier aging, connecting metabolism stress and time

Jan. 8, 2026

Biochemist Melanie McReynolds investigates how metabolism and stress shape the aging process. Her research on NAD+, a molecule central to cellular energy, reveals how maintaining its balance could promote healthier, longer lives.

Mapping proteins, one side chain at a time
Award

Mapping proteins, one side chain at a time

Jan. 7, 2026

Roland Dunbrack Jr. will receive the ASBMB DeLano Award for Computational Biosciences at the ASBMB Annual Meeting, March 7–10, just outside of Washington, D.C.

Exploring the link between lipids and longevity
Profile

Exploring the link between lipids and longevity

Jan. 2, 2026

Meng Wang will present her work on metabolism and aging at the ASBMB Annual Meeting, March 7-10, just outside of Washington, D.C.

Defining a ‘crucial gatekeeper’ of lipid metabolism
Award

Defining a ‘crucial gatekeeper’ of lipid metabolism

Dec. 31, 2025

George Carman receives the Herbert Tabor Research Award at the ASBMB Annual Meeting, March 7–10, just outside of Washington, D.C.

The science of staying strong
Feature

The science of staying strong

Dec. 26, 2025

Muscles power every movement, but they also tell the story of aging itself. Scientists are uncovering how strength fades, why some species resist it and what lifestyle and molecular clues could help preserve muscle health for life.