Journal News

Influenza gets help from gum disease bacteria

Emily Ulrich
May 15, 2025

Scientists know that bacteria in the respiratory tract, such as specific Staphylococcus aureus strains, can boost influenza infectivity by supplying a protease that cleaves the viral spike protein hemagglutinin, a step that facilitates viral host entry. The bacterium Porphyromonas gingivalis causes periodontal disease and has been associated with severe cases of influenza, but scientists have not determined whether this connection involves hemagglutinin cleavage by a specific enzyme. In a recent article from the Journal of Biological Chemistry, Noriaki Kamio and a team at Nihon University in Japan investigated the link between P. gingivalis and influenza infectivity.

The authors used immunofluorescence microscopy and a canine kidney cell line to determine that an element in the supernatant of P. gingivalis culture enhanced cell-to-cell spread of influenza, similar to cells treated with trypsin protease. The researchers hypothesized that the supernatant contains a protease that can cleave viral hemagglutinin. They suspected that the gingipain cysteine proteases Rgp and Kgp produced by P. gingivalis could perform this function.

They tested the involvement of each protease by adding individual inhibitors of Rgp and Kgp to the supernatant and found that only the Rgp inhibitor blocked hemagglutinin cleavage. In addition, the authors showed that supernatant from a P. gingivalis strain lacking Rgp could not cleave hemagglutinin. They also performed a plaque assay to measure viral titers and found that the viral concentration was lower when cells were incubated with the bacterial strain missing Rgp. Therefore, they concluded that Rgp likely cleaves hemagglutinin and enhances viral replication.

The authors suggested that future studies using human respiratory cells and animal models will help unravel details of how P. gingivalis strengthens influenza infectivity. These results may help scientists pinpoint proteins in other bacteria that may promote respiratory viral spread.

Enjoy reading ASBMB Today?

Become a member to receive the print edition four times a year and the digital edition monthly.

Learn more
Emily Ulrich

Emily Ulrich is ASBMB’s former science editor.

Get the latest from ASBMB Today

Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.

Latest in Science

Science highlights or most popular articles

Mapping fentanyl’s cellular footprint
Journal News

Mapping fentanyl’s cellular footprint

Dec. 4, 2025

Using a new imaging method, researchers at State University of New York at Buffalo traced fentanyl’s effects inside brain immune cells, revealing how the drug alters lipid droplets, pointing to new paths for addiction diagnostics.

Designing life’s building blocks with AI
Profile

Designing life’s building blocks with AI

Dec. 2, 2025

Tanja Kortemme, a professor at the University of California, San Francisco, will discuss her research using computational biology to engineer proteins at the 2026 ASBMB Annual Meeting.

Cholesterol as a novel biomarker for Fragile X syndrome
Journal News

Cholesterol as a novel biomarker for Fragile X syndrome

Nov. 28, 2025

Researchers in Quebec identified lower levels of a brain cholesterol metabolite, 24-hydroxycholesterol, in patients with fragile X syndrome, a finding that could provide a simple blood-based biomarker for understanding and managing the condition.

How lipid metabolism shapes sperm development
Journal News

How lipid metabolism shapes sperm development

Nov. 26, 2025

Researchers at Hokkaido University identify the enzyme behind a key lipid in sperm development. The findings reveal how seminolipids shape sperm formation and may inform future diagnostics and treatments for male infertility.

Mass spec method captures proteins in native membranes
Journal News

Mass spec method captures proteins in native membranes

Nov. 25, 2025

Yale scientists developed a mass spec protocol that keeps proteins in their native environment, detects intact protein complexes and tracks drug binding, offering a clearer view of membrane biology.

Laser-assisted cryoEM method preserves protein structure
Journal News

Laser-assisted cryoEM method preserves protein structure

Nov. 25, 2025

University of Wisconsin–Madison researchers devised a method that prevents protein compaction during cryoEM prep, restoring natural structure for mass spec studies. The approach could expand high-resolution imaging to more complex protein systems.