Annual Meeting

Enzymes show off new moves

A 2022 annual meeting session on enzymology
Tadhg Begley Catherine Drennan
By Tadhg Begley and Catherine Drennan
Sept. 30, 2021

Enzymes are responsible for the chemical reactions that enable all forms of life. Whether it’s the archaea living in hot springs, the bacteria deep in our soil, the plants harnessing energy from the sun or all animals, including us humans, we are all united in our reliance on enzymes. 

Understanding enzymatic chemistry enables us to tackle critical health and environmental problems, such as designing new therapeutics for diseases or using unique enzymatic capabilities for bioremediation. However, we have only skimmed the surface of learning the full scope of chemical reactions that are enzymatically catalyzed, the mysterious and intricate mechanisms that can be performed, and the dynamic motions enzymes undergo to accomplish their chemical tasks.

The presentations in this session will cover many exciting developments in enzymology, including recently discovered enzymatic functions, evidence for trapping long-anticipated enzymatic intermediates, insight into how various cofactors can enable unique reactions, and cutting-edge experimental approaches enabling us to understand better how enzymes dynamically function. There’s still a whole lot to learn about how enzymes get their jobs done. 

Keywords: enzymes, enzyme mechanisms, structural biology, biochemistry, radical SAM enzymes, metalloenzymes, natural product biosynthesis

Who should attend: all who are fascinated by how enzymes can use some newly discovered tricks, handy cofactors and dynamic movements to carry out their chemistry

Theme song: “This is How We Do It” by Montell Jordan

This session is powered proteins, cofactors and coffee.


  • Repairing enzymes using spare parts — Cathy Drennan, Howard Hughes Medical Institute and Massachusetts Institute of Technology
  • Machinery in motion: New insights into mitochondrial proteostasis — Gabriel Lander, Scripps Research
  • Structural biology of natural product biosynthetic enzymes — Janet Smith, University of Michigan
  • An aerobic strategy for C–H bond functionalization — Jennifer Bridwell–Rabb, University of Michigan
  • Riboflavin catabolism: The destruction of an icon — Tadhg Begley, Texas A&M University
  • Correlated motions in enzymes — Nozomi Ando, Cornell University
  • Nickel pincer nucleotide: Biosynthesis and function — Robert Hausinger, Michigan State University
  • Bacterial biosynthesis of natural products —Katherine Ryan, University of British Columbia
  • Radical SAMs and the vast unexplored chemistry of RiPP natural products —Douglas Alan Mitchell, University of Illinois Urbana–Champaign
  • The biosynthesis of lipoic acid: A saga of death, destruction and rebirth — Squire Booker, Penn State University
  • Unraveling the secrets of radical SAM mechanisms — Joan Broderick, Montana State University
  • How do aerobic organisms solve the oxygen sensitivity problem of [4Fe–4S] in radical SAM enzymes? — Hening Lin, Howard Hughes Medical Institute and Cornell University

Learn more

Check out all ten thematic symposia planned for the 2022 ASBMB annual meeting:

Enjoy reading ASBMB Today?

Become a member to receive the print edition monthly and the digital edition weekly.

Learn more
Tadhg Begley
Tadhg Begley

Tadhg Begley is a professor and chair of chemistry at Texas A&M University.

Catherine Drennan

Catherine Drennan is a Howard Hughes Medical Institute investigator and a professor of biology and chemistry at the Massachusetts Institute of Technology. 

Related articles

Lipids, lipids everywhere!
Michael Airola & Robert V. Stahelin
Microbial engines of global change
Sean J. Elliott & Jennifer DuBois
Sugar coating is, in fact, important
Valerie Weaver & Steve Withers
What’s new with DNA and RNA?
Karolin Luger & Chuan He

Featured jobs

from the ASBMB career center

Get the latest from ASBMB Today

Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.

Latest in Science

Science highlights or most popular articles

Evolutionary constraints on disordered proteins

Evolutionary constraints on disordered proteins

Dec. 5, 2022

Best of BMB 2022: “There’s evidence that there must be conservation of function — so how does this happen, if the sequence changes so much?”

COVID-19, preprints and journalists
Science Communication

COVID-19, preprints and journalists

Dec. 3, 2022

Researchers find that news stories often fail to mention when studies haven’t been peer reviewed.

From the journals: MCP
Journal News

From the journals: MCP

Dec. 2, 2022

Muscling in on a signaling pathway. Probing weaknesses in the T cell surface. Improving single-cell proteomics two ways. Read about papers on these topics recently published in the journal Molecular & Cellular Proteomics.

Unconventional phosphoinositide synthesis
Lipid News

Unconventional phosphoinositide synthesis

Nov. 29, 2022

Researchers uncover a clue to how disease-causing bacteria synthesize the tiny lipids known as 3-phosphoinositides to hijack host cells.

From the journals: JLR
Journal News

From the journals: JLR

Nov. 25, 2022

A new way to measure lipoprotein(a). A new source of metabolized cholesterol. A new way to count ceramides. Read about articles on these topics recently published in the Journal of Lipid Research.

How proteolysis controls the Legionnaires’ pathogen
Journal News

How proteolysis controls the Legionnaires’ pathogen

Nov. 24, 2022

The bacterium that causes this severe pneumonia has a biphasic life cycle that depends on regulation of protein homeostasis.