Annual Meeting

The era of “smart” organelles

A Discover BMB symposium: Organelles, Mechanisms and Phase Properties of Cellular Quality Control
W. Mike Henne Cheryl A. Kerfeld
By W. Mike Henne and Cheryl A. Kerfeld
Sept. 28, 2022

Organelles are the fundamental units of cellular organization, and our understanding of their roles in cell physiology has evolved dramatically since they first were described in the early 20th century. Though organelles originally were thought of as simple compartments for biochemical reactions and confined to eukaryotes, new studies have revealed “smart” roles for them in fine-tuning metabolism as well as serving as platforms coordinating signaling and quality-control pathways in both bacteria and eukaryotes.

Recent work illuminates the organizational principles governing how organelles cleverly coordinate cell quality control. These reveal how organelles create microenvironments for metabolic pathways, how they facilitate interorganelle communication to sense and respond to specific cues, and how the phase properties of lipids and proteins equip organelles to protect cells from stress and maintain organismal homeostasis.

Our symposia at the American Society for Biochemistry and Molecular Biology’s annual meeting, Discover BMB, in Seattle in March illustrate these themes and feature work in an array of fields, including prokaryotic and eukaryotic cell biology, cancer biology, and phase separation biophysics.

Just like in the song “Whatever It Takes” by Imagine Dragons, organelles are equipped to do whatever is necessary for cells to adapt and survive the ever-present challenges of life.

Keywords: Bacterial microcompartments, interorganelle communication, protein and lipid phase separation, mitochondrial metabolism.

Who should attend: Anyone interested in learning how organelles are constructed, organized and responsive to signals. Also people interested in the phase properties of proteins and lipids in organelle biology.

Theme song: “Whatever It Takes” by Imagine Dragons.

The session is powered by lipids, proteins and cellular stress.

Speakers

Bacterial organelles
Luning LuUniversity of Liverpool
Danielle Tullman–ErcekNorthwestern University
Cheryl Kerfeld (chair), Michigan State University
Arash KomelliUniversity of California, Berkeley

Phase separation in organelle structure and function
W. Mike Henne (chair), University of Texas Southwestern Medical Center at Dallas
David SavageUniversity of California, Berkeley/Howard Hughes Medical Institute
Martin JonikasPrinceton University
Alex MerzUniversity of Washington School of Medicine

Inter-organelle communication
Rushika Perera (chair), University of California, San Francisco
Karin ReinischYale University
Laura LacknerNorthwestern University
Sarah CohenUniversity of North Carolina at Chapel Hill

Enjoy reading ASBMB Today?

Become a member to receive the print edition four times a year and the digital edition monthly.

Learn more
W. Mike Henne
W. Mike Henne

W. Mike Henne is an assistant professor in the department of cell biology at the University of Texas Southwestern Medical Center in Dallas. His lab studies lipid droplets and the organization of metabolism in cells.

Cheryl A. Kerfeld
Cheryl A. Kerfeld

Cheryl A. Kerfeld is a researcher at the US Department of Energy Plant Research Lab and a professor of biochemistry and molecular biology at Michigan State University.

Get the latest from ASBMB Today

Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.

Latest in Science

Science highlights or most popular articles

Computational tool helps scientists create novel bug sprays
Journal News

Computational tool helps scientists create novel bug sprays

May 20, 2025

Rapid discovery of mosquito repellent compounds is enabled through a novel screening platform that combines both computational modeling and functional screening.

Meet Lan Huang
Interview

Meet Lan Huang

May 19, 2025

Molecular & Cellular Proteomics associate editor uses crosslinking mass spec to study protein–protein interactions to find novel therapeutics.

Influenza gets help from gum disease bacteria
Journal News

Influenza gets help from gum disease bacteria

May 15, 2025

Scientists discover that a protease from Porphyromonas gingivalis enhances viral spread. Read more about this recent Journal of Biological Chemistry paper.

How bacteria fight back against promising antimicrobial peptide
Journal News

How bacteria fight back against promising antimicrobial peptide

May 15, 2025

Researchers find a mutation in E. coli that reduces its susceptibility to a potential novel antibiotic. Read more about this recent Journal of Biological Chemistry paper.

New clues reveal how cells respond to stress
Journal News

New clues reveal how cells respond to stress

May 15, 2025

Redox signaling protein may help regulate inflammasome and innate immune activation. Read more about this recent Journal of Biological Chemistry paper.

Innovative platform empowers scientists to transform venoms into therapeutics
Journal News

Innovative platform empowers scientists to transform venoms into therapeutics

May 13, 2025

Scientists combine phage display and a “metavenome” library to discover new drugs that bind clinically relevant human cell receptors. Read about this recent Molecular & Cellular Proteomics paper.