Annual Meeting

The era of “smart” organelles

A Discover BMB symposium: Organelles, Mechanisms and Phase Properties of Cellular Quality Control
W. Mike Henne Cheryl A. Kerfeld
By W. Mike Henne and Cheryl A. Kerfeld
Sept. 28, 2022

Organelles are the fundamental units of cellular organization, and our understanding of their roles in cell physiology has evolved dramatically since they first were described in the early 20th century. Though organelles originally were thought of as simple compartments for biochemical reactions and confined to eukaryotes, new studies have revealed “smart” roles for them in fine-tuning metabolism as well as serving as platforms coordinating signaling and quality-control pathways in both bacteria and eukaryotes.

Recent work illuminates the organizational principles governing how organelles cleverly coordinate cell quality control. These reveal how organelles create microenvironments for metabolic pathways, how they facilitate interorganelle communication to sense and respond to specific cues, and how the phase properties of lipids and proteins equip organelles to protect cells from stress and maintain organismal homeostasis.

Our symposia at the American Society for Biochemistry and Molecular Biology’s annual meeting, Discover BMB, in Seattle in March illustrate these themes and feature work in an array of fields, including prokaryotic and eukaryotic cell biology, cancer biology, and phase separation biophysics.

Just like in the song “Whatever It Takes” by Imagine Dragons, organelles are equipped to do whatever is necessary for cells to adapt and survive the ever-present challenges of life.

Keywords: Bacterial microcompartments, interorganelle communication, protein and lipid phase separation, mitochondrial metabolism.

Who should attend: Anyone interested in learning how organelles are constructed, organized and responsive to signals. Also people interested in the phase properties of proteins and lipids in organelle biology.

Theme song: “Whatever It Takes” by Imagine Dragons.

The session is powered by lipids, proteins and cellular stress.

Speakers

Bacterial organelles
Luning LuUniversity of Liverpool
Danielle Tullman–ErcekNorthwestern University
Cheryl Kerfeld (chair), Michigan State University
Arash KomelliUniversity of California, Berkeley

Phase separation in organelle structure and function
W. Mike Henne (chair), University of Texas Southwestern Medical Center at Dallas
David SavageUniversity of California, Berkeley/Howard Hughes Medical Institute
Martin JonikasPrinceton University
Alex MerzUniversity of Washington School of Medicine

Inter-organelle communication
Rushika Perera (chair), University of California, San Francisco
Karin ReinischYale University
Laura LacknerNorthwestern University
Sarah CohenUniversity of North Carolina at Chapel Hill

Enjoy reading ASBMB Today?

Become a member to receive the print edition monthly and the digital edition weekly.

Learn more
W. Mike Henne
W. Mike Henne

W. Mike Henne is an assistant professor in the department of cell biology at the University of Texas Southwestern Medical Center in Dallas. His lab studies lipid droplets and the organization of metabolism in cells.

Cheryl A. Kerfeld
Cheryl A. Kerfeld

Cheryl A. Kerfeld is a researcher at the US Department of Energy Plant Research Lab and a professor of biochemistry and molecular biology at Michigan State University.

Related articles

Living in a bubble
Y. Jessie Zhang & Ivaylo Ivanov
From the Journals: JLR
Sephra Rampersad
From the journals: JBC
Ken Farabaugh
From the journals: JLR
Joseph Heath

Get the latest from ASBMB Today

Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.

Latest in Science

Science highlights or most popular articles

The molecular biology behind exercise
Journal News

The molecular biology behind exercise

Oct. 1, 2024

Researchers in Beijing use proteomic analysis to understand the muscular adaptations made during concentric and eccentric movements.

A common parasite could one day deliver drugs to the brain
News

A common parasite could one day deliver drugs to the brain

Sept. 29, 2024

Bill Sullivan explains how scientists are turning Toxoplasma gondii, often found in contaminated food or cat feces, from foe into friend.

Not so selfish after all: Viruses use freeloading genes as weapons
News

Not so selfish after all: Viruses use freeloading genes as weapons

Sept. 28, 2024

Phage viruses, increasingly used to treat antibiotic resistance, gain an advantage by cutting off a competitor’s ability to reproduce.

From the Journals: JBC
Journal News

From the Journals: JBC

Sept. 27, 2024

An Alzheimer’s disease neuronal traffic jam. Mutant Rab35 linked to neurodevelopment disorder. Is ORMDL3 a new drug target for ulcerative colitis? Read about recent JBC papers on these topics.

Yellow food dye can make living tissue transparent
News

Yellow food dye can make living tissue transparent

Sept. 22, 2024

These new methods could one day improve cancer treatment, blood draws and even tattoo removal.

Scientists discover brain circuits for placebo effect pain relief
News

Scientists discover brain circuits for placebo effect pain relief

Sept. 21, 2024

A new pain control pathway from the cortex to the cerebellum is crucial when the expectation of relief leads to pain alleviation without a therapeutic intervention.