Journal News

Targeting Toxoplasma parasites and their protein accomplices

Oluwadamilola “Dami” Oke
April 11, 2025

Toxoplasmosis is an infectious disease caused by the parasite Toxoplasma gondii and is transmitted via contaminated food or feces. The infection can cause a range of symptoms that may be mild or severe, resulting in blindness and brain infection. Current T. gondii therapeutics are not very effective, so scientists need to further investigate potential drug targets.

Sheena Dass and a team of researchers from the Université Grenoble Alpes, France, identified seven genes responsible for expressing enzymes of metabolic interest in these parasites. Their recent article in the Journal of Lipid Research characterizes one of these enzymes, T. gondii acyl-CoA synthetase 3, or TgACS3.

TgACS3 was found to be localized in the cytosol of the parasite and to upregulate its parasitic growth while increasing its chances of survival within its host. Gas chromatography-mass spectrometry was implemented to analyze the lipid content in the parasite, which revealed the role of TgAC3 in the uptake and utilization of its host fatty acids, generating the parasite phospholipid layer, and maintaining the growth of new parasites.

This study is an important step towards achieving targeted therapeutic mechanisms in the treatment of Toxoplasmosis, as researchers can leverage the findings shared in a more rigorous analysis.

Enjoy reading ASBMB Today?

Become a member to receive the print edition four times a year and the digital edition monthly.

Learn more
Oluwadamilola “Dami” Oke

Oluwadamilola “Dami” Oke is a Ph.D. candidate of biomedical engineering at the George Washington University with an interest in communication and outreach for science advancement. She is an ASBMB Today contributing writer.

Get the latest from ASBMB Today

Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.

Latest in Science

Science highlights or most popular articles

How HCMV hijacks host cells — and beyond
Profile

How HCMV hijacks host cells — and beyond

Aug. 12, 2025

Ileana Cristea, an ASBMB Breakthroughs webinar speaker, presented her research on how viruses reprogram cell structure and metabolism to enhance infection and how these mechanisms might link viral infections to cancer and other diseases.

Understanding the lipid link to gene expression in the nucleus
Profile

Understanding the lipid link to gene expression in the nucleus

Aug. 11, 2025

Ray Blind, an ASBMB Breakthroughs speaker, presented his research on how lipids and sugars in the cell nucleus are involved in signaling and gene expression and how these pathways could be targeted to identify therapeutics for diseases like cancer.

Receptor antagonist reduces age-related bone loss in mice
Journal News

Receptor antagonist reduces age-related bone loss in mice

Aug. 6, 2025

Receptor antagonist reduces bone loss and promotes osteoblast activity in aging mice, highlighting its potential to treat osteoporosis. Read more about this recent JBC paper.

Engineered fusion protein targets kiwifruit pathogen
Journal News

Engineered fusion protein targets kiwifruit pathogen

Aug. 6, 2025

Synthetic protein selectively kills kiwifruit pathogen, offering a promising biocontrol strategy for agriculture. Read more about this recent JBC paper.

Pathogen-derived enzyme engineered for antibiotic design
Journal News

Pathogen-derived enzyme engineered for antibiotic design

Aug. 6, 2025

Engineered variants of a bacterial enzyme developed at the University at Buffalo accept larger substrates, paving the way for new acinetobactin-based antimicrobials. Read more about this recent JBC paper.

Omega-3 fats linked to healthy aging and improved heart metabolism
Journal News

Omega-3 fats linked to healthy aging and improved heart metabolism

Aug. 1, 2025

Scientists from the University of Iowa find that a diet high in polyunsaturated fatty acids from fish oil increases cardiac triglyceride uptake and improves insulin sensitivity. Read more about this recent JLR study.