Different field, different problem, same solution: metabolism!
Metabolism has captured the interest of researchers across many different biological disciplines. In some fields, interest in longstanding metabolic questions has been renewed. In other areas, new metabolic connections are being made for the first time. No matter the topic, however, metabolism studies evoke pathway charts and methodological approaches that may not be common knowledge in all disciplines, and this could hinder dialogue between investigators. Moreover, many of the same metabolic patterns are observed consistently in different disease settings, animal models and cell types.
The purpose of our symposium at Discover BMB, the annual meeting of the American Society for Biochemistry and Molecular Biology, which will be held in March in Seattle, is to bring together researchers from disparate areas of biology who speak the common language of metabolism. We want to facilitate interactions between investigators who may be thinking about the same metabolic themes, but who are not typically at the same meetings or conferences. The presentations will not be organized by discipline but rather by metabolism topic, with the aim of stimulating new discussions and collaborative opportunities.
Our symposium will feature research examining metabolism at multiple levels — ranging from whole body to cells and organelles. We will hear how the same metabolic programs are implicated not only in diseases such as cancer and neurodegeneration but also in fundamental biochemical processes including immune response and vision.
Keywords: Metabolism, metabolomics, lipids, physiology, interorgan communication, mitochondria, lysosomes, isotope tracing.
Who should attend: Anyone interested in metabolism at any level in any context.
Theme song: “What Makes You Beautiful” by One Direction, because metabolism lights up all of our worlds — and in honor of the infamous “What Makes Glycolysis” parody (look it up!).
This session is powered by ox phos (platinum-level sponsor) and substrate-level phosphorylation (gold-level sponsor).
Speakers
Metabolic physiology
Gary Patti (chair), Washington University in St. Louis
Deb Muoio, Duke University
Nada Kalaany, Harvard Medical School
Matt Gentry, University of Kentucky
Metabolism in health and disease
Jason Tennessen, Indiana University
Jing Fan, University of Wisconsin
Organelle metabolism
Nika Danial (chair), Harvard Medical School
Dale Abel, University of California, Los Angeles
Roberto Zoncu, University of California, Berkeley
Natalie Niemi, Washington University in St. Louis
The complete list
Learn about all 11 symposia planned for Discover BMB 2023:- Protein Machines and Disorder
- Regulation of RNA
- Organelles, Mechanisms and Phase Properties of Cellular Quality Control
- Lipid Dynamics and Signals in Membrane and Protein Structure
- Frontiers in Carbohydrate Synthesis and Recognition
- Bias In, Bias Out in Data Science
- Cell Signaling — New Tools and Emerging Concepts
- Education and Professional Development
- Biochemistry of Elemental Cycling
- Advances in Organismal and Cellular Metabolism
- Artificial Intelligence and Machine Learning in Structural Biology, Drug Design and Systems Biology
Enjoy reading ASBMB Today?
Become a member to receive the print edition four times a year and the digital edition monthly.
Learn moreGet the latest from ASBMB Today
Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.
Latest in Science
Science highlights or most popular articles

How lipid metabolism shapes sperm development
Researchers at Hokkaido University identify the enzyme behind a key lipid in sperm development. The findings reveal how seminolipids shape sperm formation and may inform future diagnostics and treatments for male infertility.

Mass spec method captures proteins in native membranes
Yale scientists developed a mass spec protocol that keeps proteins in their native environment, detects intact protein complexes and tracks drug binding, offering a clearer view of membrane biology.

Laser-assisted cryoEM method preserves protein structure
University of Wisconsin–Madison researchers devised a method that prevents protein compaction during cryoEM prep, restoring natural structure for mass spec studies. The approach could expand high-resolution imaging to more complex protein systems.

Method sharpens proteome-wide view of structural changes
Researchers developed a method that improves limited proteolysis coupled with mass spectrometry, separating true changes from abundance or splicing effects.

Discoveries made possible by DNA
The discovery of DNA’s double helix revealed how genetic information is stored, copied and expressed. Revisit that breakthrough and traces how it laid the foundation for modern molecular biology, genomics and biotechnology.

Unraveling the language of histones
Philip Cole presented his research on how posttranslational modifications to histones are involved in gene expression and how these modifications could be therapeutically targeted to treat diseases like cancer.