Journal News

Elusive zebrafish enzyme in lipid secretion

Isabel Casas Emily Ulrich
May 1, 2025

Lipids provide energy and structural components during vertebrate development. Lipoproteins aid in lipid transport throughout the body, and synthesized lipids are also stored in lipid droplets within the cell. Embryos of the model organism zebrafish receive nutrients, including lipids, from a maternally deposited yolk through extraembryonic tissue called the yolk syncytial layer, or YSL. Lipid nutrients are released through the production and secretion of lipoproteins rich in triacylglycerol, or TAG. Scientists want to understand which enzymes direct TAG production to lipoproteins for secretion versus lipid droplets for storage.

In a recent Journal of Biological Chemistry article, Meredith Wilson from Johns Hopkins University and U.S. and U.K. colleagues investigated the fate of TAG in zebrafish lacking certain TAG synthesis enzymes. They found that zebrafish lacking diacylglycerol acyltransferase-2, or Dgat2, can still produce TAG, but the TAG is channeled for YSL storage instead of secretion, as noted by the excessive accumulation of lipid droplets in the YSL that make it look opaque.

The authors concluded that zebrafish have multiple enzymes to ensure TAG production remains intact. Future studies will identify the enzyme that fails to properly channel TAG to lipoprotein formation for secretion in embryonic development.

Enjoy reading ASBMB Today?

Become a member to receive the print edition four times a year and the digital edition monthly.

Learn more
Isabel Casas

Isabel Casas is the ASBMB’s publications director.

Emily Ulrich

Emily Ulrich is the ASBMB’s science editor.

Get the latest from ASBMB Today

Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.

Latest in Science

Science highlights or most popular articles

What’s in a diagnosis?
Essay

What’s in a diagnosis?

Sept. 4, 2025

When Jessica Foglio’s son Ben was first diagnosed with cerebral palsy, the label didn’t feel right. Whole exome sequencing revealed a rare disorder called Salla disease. Now Jessica is building community and driving research for answers.

Peer through a window to the future of science
Annual Meeting

Peer through a window to the future of science

Sept. 3, 2025

Aaron Hoskins of the University of Wisconsin–Madison and Sandra Gabelli of Merck, co-chairs of the 2026 ASBMB annual meeting, to be held March 7–10, explain how this gathering will inspire new ideas and drive progress in molecular life sciences.

Glow-based assay sheds light on disease-causing mutations
Journal News

Glow-based assay sheds light on disease-causing mutations

Sept. 2, 2025

University of Michigan researchers create a way to screen protein structure changes caused by mutations that may lead to new rare disease therapeutics.

How signals shape DNA via gene regulation
Journal News

How signals shape DNA via gene regulation

Aug. 19, 2025

A new chromatin isolation technique reveals how signaling pathways reshape DNA-bound proteins, offering insight into potential targets for precision therapies. Read more about this recent MCP paper.

A game changer in cancer kinase target profiling
Journal News

A game changer in cancer kinase target profiling

Aug. 19, 2025

A new phosphonate-tagging method improves kinase inhibitor profiling, revealing off-target effects and paving the way for safer, more precise cancer therapies tailored to individual patients. Read more about this recent MCP paper.

How scientists identified a new neuromuscular disease
Feature

How scientists identified a new neuromuscular disease

Aug. 14, 2025

NIH researchers discover Morimoto–Ryu–Malicdan syndrome, after finding shared symptoms and RFC4 gene variants in nine patients, offering hope for faster diagnosis and future treatments.