Elusive zebrafish enzyme in lipid secretion
Lipids provide energy and structural components during vertebrate development. Lipoproteins aid in lipid transport throughout the body, and synthesized lipids are also stored in lipid droplets within the cell. Embryos of the model organism zebrafish receive nutrients, including lipids, from a maternally deposited yolk through extraembryonic tissue called the yolk syncytial layer, or YSL. Lipid nutrients are released through the production and secretion of lipoproteins rich in triacylglycerol, or TAG. Scientists want to understand which enzymes direct TAG production to lipoproteins for secretion versus lipid droplets for storage.

In a recent Journal of Biological Chemistry article, Meredith Wilson from Johns Hopkins University and U.S. and U.K. colleagues investigated the fate of TAG in zebrafish lacking certain TAG synthesis enzymes. They found that zebrafish lacking diacylglycerol acyltransferase-2, or Dgat2, can still produce TAG, but the TAG is channeled for YSL storage instead of secretion, as noted by the excessive accumulation of lipid droplets in the YSL that make it look opaque.
The authors concluded that zebrafish have multiple enzymes to ensure TAG production remains intact. Future studies will identify the enzyme that fails to properly channel TAG to lipoprotein formation for secretion in embryonic development.
Enjoy reading ASBMB Today?
Become a member to receive the print edition four times a year and the digital edition monthly.
Learn moreGet the latest from ASBMB Today
Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.
Latest in Science
Science highlights or most popular articles

Mapping the placenta’s hormone network
Study uncovers how the placenta actively metabolizes not only glucocorticoids but also novel androgens and progesterones, reshaping our understanding of pregnancy and its complications.

Biochemists and molecular biologists sweep major 2025 honors
Recent Nobel, MacArthur and Kimberly Prize honorees highlight the power of biochemistry and molecular biology to drive discovery, including immune tolerance, vaccine design and metabolic disease, and to advance medicine and improve human health.

Spider-like proteins spin defenses to control immunity
Researchers from Utrecht University discovered two distinct binding modes of a spider-shaped immune inhibitor found in serum.

A biological camera: How AI is transforming retinal imaging
AI is helping clinicians see a more detailed view into the eye, allowing them to detect diabetic retinopathy earlier and expand access through tele-ophthalmology. These advances could help millions see a clearer future.

AI in the lab: The power of smarter questions
An assistant professor discusses AI's evolution from a buzzword to a trusted research partner. It helps streamline reviews, troubleshoot code, save time and spark ideas, but its success relies on combining AI with expertise and critical thinking.

Training AI to uncover novel antimicrobials
Antibiotic resistance kills millions, but César de la Fuente’s lab is fighting back. By pairing AI with human insight, researchers are uncovering hidden antimicrobial peptides across the tree of life with a 93% success rate against deadly pathogens.