Webinar

Parsing plant pigment pathways

Andrea Lius
June 13, 2025

Flavonoids are plant-derived secondary metabolites that protect plants from pathogens, parasites and abiotic stress, such as extreme weather and temperatures — they essentially act as the plants’ immune system, said Erich Grotewold, former chair of biochemistry and molecular biology at Michigan State University. Grotewold also serves on the editorial board of the Journal of Biological Chemistry.

Erich Grotewold
Erich Grotewold

“Let’s not forget that plants can’t move when their environments get uncomfortable,” Grotewold said, emphasizing the importance of plant specialized metabolic pathways and products.

Flavonoids are a component of the phenylpropanoid biosynthesis pathway. They were once colloquially known as “Vitamin P” for their antioxidant properties, and their production and sales contribute over a billion U.S. dollars every year to the global economy. While not all flavonoids are pigmented, these molecules produce pigments that give flowers their deep, rich colors.

“Flavonoids have contributed (to what) we understand as modern genetics today,” Grotewold said. Indeed, flavonoid studies from the 1980s led to the discovery of the “jumping genes,” short segments of DNA that can move from one genomic location to another, and RNA interference, which is now a common tool in research and biotechnology.

Grotewold was this month’s speaker on ASBMB Breakthroughs, a webinar series highlighting research from American Society for Biochemistry and Molecular Biology journals. During his talk, sponsored by JBC, he shared his discovery that flavonoid gene regulation is controlled by the interaction between transcription factors, rather than their DNA-binding specificity.

“My journey into plants started by trying to figure out how (the two branches of the flavonoid biosynthesis pathway), which involve the same DNA-binding domain and in some regards, very similar compounds, are differentially regulated,” said Grotewold.

Some flavonoids produce pigments that give flowers and fruits their colors.
Some flavonoids produce pigments that give flowers and fruits their colors.

In corn, the flavonoid biosynthesis pathway forks into two branches: one forms phlobaphenes, a pigment that is unique to grass plants, and the other, anthocyanins, which are more widely distributed throughout the plant kingdom. These branches are regulated by the transcription factors P1 and C1, respectively. However, Grotewold explained, both P1 and C1 contain the same DNA-binding domain, known as MYB, and thus have very similar DNA-binding specificities.

Genes in the anthocyanin biosynthesis pathway are regulated by the physical interaction between the MYB domain on C1 and another transcription factor called R. Grotewold found that six amino acids on C1, four of which are on the solvent-exposed surface of MYB, confer C1’s specificity for R. When Grotewold substituted the amino acids at these positions on P1 for those found on C1, the modified P1 protein gained the ability to interact with R and activate the anthocyanin pathway.

Grotewold and his colleagues showed that R can act as a “regulatory switch” — the configuration of one of R’s domains, called ACT, can determine whether it interacts with MYB, and subsequently, which genes are being targeted and which pathways activated. This indicated that gene regulation in flavonoid biosynthesis depends on the interaction between transcription factors, not DNA binding specificity, Grotewold said.

“We now know that this six amino acid motif that we initially found in C1 regulates a lot of different processes in plants, even beyond the formation of anthocyanin pigment (the pathway’s end-product in corn),” he added.

More recently, Grotewold’s team has been studying flavonoid biosynthesis in Arabidopsis thaliana, a small flowering plant in the mustard family. They found that naringenin chalcone, one of the pathway intermediates, can interact with and stabilize ultraviolet-B receptor protein, or UVR8, in a UV-independent manner. Grotewold said that he found this surprising not only because UV-independent functions of UVR8 were previously unknown, but also because it suggested that naringenin chalcone may be more important than once expected.

“We typically ignore pathway intermediates because we think of them as biologically inactive,” Grotewold said, “But we saw that they can have very important regulatory activities.”

Up next

Ileana Cristea

TBD

June 18, 2025  12:15–1 p.m. Eastern
Ileana Cristea of Princeton University will present her research on using mass spectrometry to study viruses.

Register for the whole ASBMB Breakthroughs webinar series

Enjoy reading ASBMB Today?

Become a member to receive the print edition four times a year and the digital edition monthly.

Learn more
Andrea Lius

Andrea Lius is a Ph.D. candidate in the Ong quantitative biology lab at the University of Washington. She is an ASBMB Today volunteer contributor.

Get the latest from ASBMB Today

Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.

Latest in Science

Science highlights or most popular articles

Glow-based assay sheds light on disease-causing mutations
Journal News

Glow-based assay sheds light on disease-causing mutations

Sept. 2, 2025

University of Michigan researchers create a way to screen protein structure changes caused by mutations that may lead to new rare disease therapeutics.

How signals shape DNA via gene regulation
Journal News

How signals shape DNA via gene regulation

Aug. 19, 2025

A new chromatin isolation technique reveals how signaling pathways reshape DNA-bound proteins, offering insight into potential targets for precision therapies. Read more about this recent MCP paper.

A game changer in cancer kinase target profiling
Journal News

A game changer in cancer kinase target profiling

Aug. 19, 2025

A new phosphonate-tagging method improves kinase inhibitor profiling, revealing off-target effects and paving the way for safer, more precise cancer therapies tailored to individual patients. Read more about this recent MCP paper.

How scientists identified a new neuromuscular disease
Feature

How scientists identified a new neuromuscular disease

Aug. 14, 2025

NIH researchers discover Morimoto–Ryu–Malicdan syndrome, after finding shared symptoms and RFC4 gene variants in nine patients, offering hope for faster diagnosis and future treatments.

Unraveling cancer’s spaghetti proteins
Profile

Unraveling cancer’s spaghetti proteins

Aug. 13, 2025

MOSAIC scholar Katie Dunleavy investigates how Aurora kinase A shields oncogene c-MYC from degradation, using cutting-edge techniques to uncover new strategies targeting “undruggable” molecules.

How HCMV hijacks host cells — and beyond
Profile

How HCMV hijacks host cells — and beyond

Aug. 12, 2025

Ileana Cristea, an ASBMB Breakthroughs webinar speaker, presented her research on how viruses reprogram cell structure and metabolism to enhance infection and how these mechanisms might link viral infections to cancer and other diseases.