Journal News

New clues reveal how cells respond to stress

Emily Ulrich
May 15, 2025

Inflammasome protein complexes form in response to signals associated with danger, such as an infection or environmental stress, and trigger the innate immune response. The serine protease dipeptidyl peptidase 9, or DPP9, forms a dimer in its active conformation and interacts with components of inflammasomes to prevent unnecessary activation. Scientists know that synthetic inhibitors of DPP9 activate certain inflammasomes. However, whether a cell-intrinsic molecule can inhibit this enzyme remains an open question. Therefore, Lydia Tsamouri, Jeffrey Hsiao and colleagues from the Weill Cornell Graduate School of Medical Sciences and Memorial Sloan Kettering Cancer Center investigated DPP9 interaction partners. They examined a connection between DPP9 and redox sensor KEAP1 in their recent Journal of Biological Chemistry article.

Cryogenic electron microscopy structure of the active NLRP3 inflammasome.
Cryogenic electron microscopy structure of the active NLRP3 inflammasome.

Using a fluorogenic probe that functions as a DPP9 substrate, the authors established that KEAP1 inhibits DPP9 activity in cells. They also found that KEAP1 can only inhibit DPP9 when both are introduced into cells at the same time via transfection with complementary DNA, or cDNA, that encodes each protein, before DPP9 dimerizes; newly introduced KEAP1 could not inhibit DPP9 already present in cells. The researchers hypothesized that KEAP1 interacts with DPP9 in a state different from its folded dimeric structure and that a cellular event or biomolecule could force DPP9 to adopt this alternative conformation. They tested multiple compounds, including electron transport chain inhibitors and oxidants like hydrogen peroxide, but they have not yet found a condition that leads to KEAP1–DPP9 complex formation and DPP9 inactivation.

Future experiments will focus on identifying a signal or molecules that could change DPP9’s conformation and whether the DPP9–KEAP1 interaction directly initiates inflammasome activation. Outlining the full DPP9 pathway involving inflammasomes will help scientists understand how cells convert danger signals into immune action and restrain unnecessary activation.

Enjoy reading ASBMB Today?

Become a member to receive the print edition four times a year and the digital edition monthly.

Learn more
Emily Ulrich

Emily Ulrich is ASBMB’s former science editor.

Get the latest from ASBMB Today

Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.

Latest in Science

Science highlights or most popular articles

Mining microbes for rare earth solutions
Award

Mining microbes for rare earth solutions

Jan. 14, 2026

Joseph Cotruvo, Jr., will receive the ASBMB Mildred Cohn Young Investigator Award at the ASBMB Annual Meeting, March 7–10, just outside of Washington, D.C.

Fueling healthier aging, connecting metabolism stress and time
Feature

Fueling healthier aging, connecting metabolism stress and time

Jan. 8, 2026

Biochemist Melanie McReynolds investigates how metabolism and stress shape the aging process. Her research on NAD+, a molecule central to cellular energy, reveals how maintaining its balance could promote healthier, longer lives.

Mapping proteins, one side chain at a time
Award

Mapping proteins, one side chain at a time

Jan. 7, 2026

Roland Dunbrack Jr. will receive the ASBMB DeLano Award for Computational Biosciences at the ASBMB Annual Meeting, March 7–10, just outside of Washington, D.C.

Exploring the link between lipids and longevity
Profile

Exploring the link between lipids and longevity

Jan. 2, 2026

Meng Wang will present her work on metabolism and aging at the ASBMB Annual Meeting, March 7-10, just outside of Washington, D.C.

Defining a ‘crucial gatekeeper’ of lipid metabolism
Award

Defining a ‘crucial gatekeeper’ of lipid metabolism

Dec. 31, 2025

George Carman receives the Herbert Tabor Research Award at the ASBMB Annual Meeting, March 7–10, just outside of Washington, D.C.

The science of staying strong
Feature

The science of staying strong

Dec. 26, 2025

Muscles power every movement, but they also tell the story of aging itself. Scientists are uncovering how strength fades, why some species resist it and what lifestyle and molecular clues could help preserve muscle health for life.