ASBMB Annual Meeting

Study links DHA with diabetic retinopathy

Opeoluwa Iwaloye
By Opeoluwa Iwaloye
March 24, 2024

Diabetic retinopathy, or DR, is a leading cause of blindness that occurs when blood sugar blocks the tiny vessels that supply blood to the retina. Researchers know that docosahexaenoic acid, or DHA, an omega-3 fatty acid found in the eyes in high concentration, supports eye and vision health, but do not yet fully understand its relation to DR.

Ball and stick illustration of DHA
In this ball-and-stick model of the docosahexaenoic acid molecule, C22H32O2, carbon is black, hydrogen is white and oxygen is red.

In a recent functional study, researchers at the University of Illinois at Chicago examined the correlation between DHA levels and the development of diabetic retinopathy. Sugasini Dhavamani, a research assistant professor, and Poorna Chandra Rao Yalgala, a researcher, led the study.

“We showed for the first time that reduced retinal DHA levels in humans and mice models of diabetes,” Dhavamani said.

The team determined DHA levels, activity and function in the retina using gas chromatography–mass spectrometry, optical coherence tomography and electroretinography, respectively. They found that DHA levels in mice that were genetically modified to have diabetes were 9% to 11% and in diabetic humans were 8% to 10%, whereas DHA levels of nondiabetic mice and humans were 15% to 18%, meaning they observed a 40% to 50% reduction of DHA in diabetic mice and humans.

The observed difference correlated with variations in the levels of fatty acid elongation, metabolism and inflammation markers. The researchers also reported reduced retinal thickness and function in diabetic mice and humans.

While oily fish is a major dietary source of DHA, clinical trials with fish oil have not improved visual function. “This is due to the specificity of blood–retinal barrier that is incompatible with the specificity of the intestinal barrier,” Dhavamani said.

Left to right, researcher Poorna C.R. Yalagala and research assistant professor Sugasini Dhavamani did this study at the University of Illinois at Chicago.

The researchers previously tested whether this limitation could be overcome using a lysophospholipid form of DHA to improve retinal function. They found that it is possible to increase retinal DHA by almost 100% in a normal adult mouse with a low dose of lysophosphatidylcholine-DHA.

The UIC team believes this form of DHA could be used therapeutically to prevent or mitigate retinal dysfunction associated with diabetes and Alzheimer’s disease, as well as age-related macular degeneration. Moreover, it could pave the way for a safe, cost-effective nutraceutical strategy to prevent diabetes-associated visual sensitivity decline in a majority of the population.

Details

Sugasini Dhavamani will present this research from 4:30 to 5:30 p.m. CDT on March 25, at Discover BMB 2024, the American Society for Biochemistry and Molecular Biology annual meeting in San Antonio. Her poster is at Board 191.

Abstract title: DHA deficiency linked to diabetic retinopathy progression in experimental animal models and patients with diabetic mellitus — a novel finding.

Enjoy reading ASBMB Today?

Become a member to receive the print edition four times a year and the digital edition monthly.

Learn more
Opeoluwa Iwaloye
Opeoluwa Iwaloye

Opeoluwa Iwaloye is a Ph.D. student at the University of Florida Biomedical Sciences Program (immunology and microbiology) studying the genetic and environmental determinants of Type 1 diabetes. She is passionate about the molecular basis of immunological diseases.

Get the latest from ASBMB Today

Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.

Latest in Science

Science highlights or most popular articles

How scientists identified a new neuromuscular disease
Feature

How scientists identified a new neuromuscular disease

Aug. 14, 2025

NIH researchers discover Morimoto–Ryu–Malicdan syndrome, after finding shared symptoms and RFC4 gene variants in nine patients, offering hope for faster diagnosis and future treatments.

Unraveling cancer’s spaghetti proteins
Profile

Unraveling cancer’s spaghetti proteins

Aug. 13, 2025

MOSAIC scholar Katie Dunleavy investigates how Aurora kinase A shields oncogene c-MYC from degradation, using cutting-edge techniques to uncover new strategies targeting “undruggable” molecules.

How HCMV hijacks host cells — and beyond
Profile

How HCMV hijacks host cells — and beyond

Aug. 12, 2025

Ileana Cristea, an ASBMB Breakthroughs webinar speaker, presented her research on how viruses reprogram cell structure and metabolism to enhance infection and how these mechanisms might link viral infections to cancer and other diseases.

Understanding the lipid link to gene expression in the nucleus
Profile

Understanding the lipid link to gene expression in the nucleus

Aug. 11, 2025

Ray Blind, an ASBMB Breakthroughs speaker, presented his research on how lipids and sugars in the cell nucleus are involved in signaling and gene expression and how these pathways could be targeted to identify therapeutics for diseases like cancer.

Receptor antagonist reduces age-related bone loss in mice
Journal News

Receptor antagonist reduces age-related bone loss in mice

Aug. 6, 2025

Receptor antagonist reduces bone loss and promotes osteoblast activity in aging mice, highlighting its potential to treat osteoporosis. Read more about this recent JBC paper.

Engineered fusion protein targets kiwifruit pathogen
Journal News

Engineered fusion protein targets kiwifruit pathogen

Aug. 6, 2025

Synthetic protein selectively kills kiwifruit pathogen, offering a promising biocontrol strategy for agriculture. Read more about this recent JBC paper.