Journal News

Targeting the lipid envelope to control COVID-19

Chloe Kirk
Nov. 9, 2022

Viruses can be grouped into enveloped or nonenveloped. When enveloped viruses are shed by the host cell, they take part of the cell’s membrane and use it to surround themselves with a lipid envelope. Enveloped viruses include SARS-CoV-2, influenza and HIV. However, little research has been done on viral envelopes’ composition or how they could be used to target the virus directly.

Researchers at Cardiff University have determined that certain mouthwashes can disturb the lipid envelope of the SARS-CoV-2 molecule and affect the presence of the virus in patients.
Researchers at Cardiff University have determined that certain mouthwashes can
disturb the lipid envelope of the SARS-CoV-2 molecule and affect the presence
of the virus in patients.

Early in the COVID-19 pandemic, governments around the world told people to wash their hands with soap and water for at least 20 seconds or use hand sanitizer with at least 60% ethanol to minimize the virus’ spread; the idea was to dissolve the envelope. Valerie O’Donnell, a lipid biochemist and professor at Cardiff University, saw all this and asked one question: If soap can inactivate virus on our hands, could it do this in our throat?

“SARS-CoV-2 is being shed from the back of the throat, but no one is thinking about lipid membranes,” she said. When she began her research, “All the focus (was) on vaccines.”

In a recent Journal of Lipid Research publication, O’Donnell and a multidisciplinary team describe how they determined SARS-CoV-2’s lipid envelope composition and began testing how to use this information to target virus envelope degradation with existing commercial products, such as oral rinses.

If the virus has a membrane similar to a cell, SARS-CoV-2 should be sensitive to detergents; by targeting the envelope, the researchers could target the virus itself. The team first focused on the composition of the envelope to answer the question, Is the virus’ membrane similar to a cell membrane? 

O’Donnell’s team found that the SARS-CoV-2 virus envelope consists mainly of phospholipids with some cholesterol and sphingolipids. Compared with cellular membranes, the SARS-CoV-2 envelope has higher levels of aminophospholipids on the outer surface. Exposed aminophospholipids are known to promote a pro-inflammatory environment, which might contribute to inflammation-related problems in COVID-19. 

The composition of the SARS-CoV-2 envelope is such that it should be disrupted easily using soaps (surfactants). O’Donnell next proposed testing this by teaming up with dentists and virologists to determine if any oral rinse or mouthwash on the market could target and destroy these virus envelopes. 

In collaboration with Richard Stanton and David Thomas at Cardiff University, the researchers tested various mouthwashes on patients hospitalized with COVID-19. They found that mouthwashes containing the antiseptic cetylpyridinium chloride eliminated the virus for at least one hour in about half the patients tested, whereas povidone-iodine and saline mouthwashes had little or no effect.

In the future, the team plans to study how the inflammatory mechanisms of the cells might affect the composition of the viral lipid envelope. 

“Vaccines are not a complete solution,” O’Donnell said.

Preventive measures that target the virus in the throat or nasal passages have potential to combat COVID-19 transmission. Understanding the composition of SARS-CoV-2 lipid envelope membranes might provide new ways to target the virus and further elucidate how the virus interacts with host cells.

Enjoy reading ASBMB Today?

Become a member to receive the print edition monthly and the digital edition weekly.

Learn more
Chloe Kirk

Chloe Kirk is working toward her Ph.D. in biochemistry and molecular biology at the University of Miami. Her interests are science research, communication and outreach.

Related articles

From the journals: JLR
Andrea Pereyra
From the journals: JLR
Brian O'Flynn
From the journals: JLR
Sephra Rampersad
From the journals: JLR
Poornima Sankar
From the journals: JLR
Joseph Heath

Get the latest from ASBMB Today

Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.

Latest in Science

Science highlights or most popular articles

The quest to treat and cure xerostomia
Interview

The quest to treat and cure xerostomia

July 23, 2024

Blake Warner, chief of the Salivary Disorders Unit at the NIH talks about his lab’s efforts to develop treatments for dry mouth.

There's more to blue cheese than just the stench
News

There's more to blue cheese than just the stench

July 21, 2024

Virginia Tech researchers discovered a way to synthesize a compound in the mold of blue cheese that has antibacterial and anticancer properties.

Engineering cells to broadcast their behavior can help scientists study their inner workings
News

Engineering cells to broadcast their behavior can help scientists study their inner workings

July 20, 2024

Researchers can use waves to transmit signals from the invisible processes and dynamics underlying how cells make decisions.

From the journals: JBC
Journal News

From the journals: JBC

July 19, 2024

Lung cancer cells resist ferroptosis. ORMDL3 in ulcerative colitis. Novel genetic variants in thyroid cancer. Read about these recent papers.

Seeking the sweet spot to beat a pig parasite
Journal News

Seeking the sweet spot to beat a pig parasite

July 16, 2024

Researchers extracted, separated and tested glycans from the porcine whipworm in an effort to determine the best way to develop treatments and vaccines.

Radioactive drugs strike cancer with precision
News

Radioactive drugs strike cancer with precision

July 14, 2024

The tumor-seeking radiopharmaceuticals are charting a new course in oncology, with promise for targeted treatments with fewer side effects.