How antigen-processing proteins shape immunity
In diseases such as cancer or infection, the body’s process of presenting peptides through the antigen-processing and presentation machinery, or APPM, to immune cells is often altered. A subset of molecules called human leukocyte antigen class I, or HLA-I, presents these peptides to immune cells, constituting what is known as the immunopeptidome, which is critical for immune surveillance. However, scientists have yet to fully understand how individual components of the APPM influence the composition and diversity of the immunopeptidome.
Ilja Shapiro and a team of researchers based in Switzerland and the Netherlands published a study in Molecular & Cellular Proteomics where they knocked out 11 genes involved in the APPM in a cell line model to assess how these perturbations shape the immunopeptidomic landscape. They found that deleting the CALR gene had minor effects on reducing immunopeptidome diversity, while, as expected, deleting B2M led to a dramatic change in the immunopeptidome. More specifically, deleting genes such as TAP1, TAP2, or IRF2 caused a significant change in the length preference, binding affinity, diversity and presentation capacity on HLA-I molecules. These results highlight the importance of the APPM in regulating immunity and may help explain how defects in antigen presentation reshape the immunopeptidome in diseases such as cancer. Future research can help develop predictive tools to investigate HLA-bound peptides when presentation defects arise in diseases.
Enjoy reading ASBMB Today?
Become a member to receive the print edition four times a year and the digital edition monthly.
Learn moreGet the latest from ASBMB Today
Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.
Latest in Science
Science highlights or most popular articles

Building the blueprint to block HIV
Wesley Sundquist will present his work on the HIV capsid and revolutionary drug, Lenacapavir, at the ASBMB Annual Meeting, March 7–10, in Maryland.

Gut microbes hijack cancer pathway in high-fat diets
Researchers at the Feinstein Institutes for Medical Research found that a high-fat diet increases ammonia-producing bacteria in the gut microbiome of mice, which in turn disrupts TGF-β signaling and promotes colorectal cancer.

Mapping fentanyl’s cellular footprint
Using a new imaging method, researchers at State University of New York at Buffalo traced fentanyl’s effects inside brain immune cells, revealing how the drug alters lipid droplets, pointing to new paths for addiction diagnostics.

Designing life’s building blocks with AI
Tanja Kortemme, a professor at the University of California, San Francisco, will discuss her research using computational biology to engineer proteins at the 2026 ASBMB Annual Meeting.

Cholesterol as a novel biomarker for Fragile X syndrome
Researchers in Quebec identified lower levels of a brain cholesterol metabolite, 24-hydroxycholesterol, in patients with fragile X syndrome, a finding that could provide a simple blood-based biomarker for understanding and managing the condition.

How lipid metabolism shapes sperm development
Researchers at Hokkaido University identify the enzyme behind a key lipid in sperm development. The findings reveal how seminolipids shape sperm formation and may inform future diagnostics and treatments for male infertility.