How antigen-processing proteins shape immunity
In diseases such as cancer or infection, the body’s process of presenting peptides through the antigen-processing and presentation machinery, or APPM, to immune cells is often altered. A subset of molecules called human leukocyte antigen class I, or HLA-I, presents these peptides to immune cells, constituting what is known as the immunopeptidome, which is critical for immune surveillance. However, scientists have yet to fully understand how individual components of the APPM influence the composition and diversity of the immunopeptidome.
Ilja Shapiro and a team of researchers based in Switzerland and the Netherlands published a study in Molecular & Cellular Proteomics where they knocked out 11 genes involved in the APPM in a cell line model to assess how these perturbations shape the immunopeptidomic landscape. They found that deleting the CALR gene had minor effects on reducing immunopeptidome diversity, while, as expected, deleting B2M led to a dramatic change in the immunopeptidome. More specifically, deleting genes such as TAP1, TAP2, or IRF2 caused a significant change in the length preference, binding affinity, diversity and presentation capacity on HLA-I molecules. These results highlight the importance of the APPM in regulating immunity and may help explain how defects in antigen presentation reshape the immunopeptidome in diseases such as cancer. Future research can help develop predictive tools to investigate HLA-bound peptides when presentation defects arise in diseases.
Enjoy reading ASBMB Today?
Become a member to receive the print edition four times a year and the digital edition monthly.
Learn moreGet the latest from ASBMB Today
Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.
Latest in Science
Science highlights or most popular articles

Redefining excellence to drive equity and innovation
Donita Brady will receive the ASBMB Ruth Kirschstein Award for Maximizing Access in Science at the ASBMB Annual Meeting, March 7–10, just outside of Washington, D.C.

Mining microbes for rare earth solutions
Joseph Cotruvo, Jr., will receive the ASBMB Mildred Cohn Young Investigator Award at the ASBMB Annual Meeting, March 7–10, just outside of Washington, D.C.

Fueling healthier aging, connecting metabolism stress and time
Biochemist Melanie McReynolds investigates how metabolism and stress shape the aging process. Her research on NAD+, a molecule central to cellular energy, reveals how maintaining its balance could promote healthier, longer lives.

Mapping proteins, one side chain at a time
Roland Dunbrack Jr. will receive the ASBMB DeLano Award for Computational Biosciences at the ASBMB Annual Meeting, March 7–10, just outside of Washington, D.C.

Exploring the link between lipids and longevity
Meng Wang will present her work on metabolism and aging at the ASBMB Annual Meeting, March 7-10, just outside of Washington, D.C.

Defining a ‘crucial gatekeeper’ of lipid metabolism
George Carman receives the Herbert Tabor Research Award at the ASBMB Annual Meeting, March 7–10, just outside of Washington, D.C.