Computation is the new experiment
After decades of playing second fiddle, computation is now taking center stage — achieving critical insights that experimentation alone cannot provide. We are witnessing a dramatic rise in artificial intelligence–based methods coupled with year-on-year improvements of physics-based approaches. We now can fold a protein accurately from sequence alone!
Game-changing methods in protein and enzyme design are hurtling toward us. Scientists now can integrate numerous experimental data sets into computational models to explore previously unseen elements at (and across) scales never before achieved. Computational simulations are rewriting textbooks — from molecules to system dynamics and function. Machine learning is transforming drug design and development.
All in all, you will not find a symposium at Discover BMB, the annual meeting of the American Society for Biochemistry and Molecular Biology, filled with more excitement and possibility than ours. Buckle up for a thrilling ride in March in Seattle!
Keywords: Artificial intelligence, structural biology, simulation, drug discovery, bioinformatics, systems biology, machine learning.
Who should attend: All who want to find out how computation is transforming biological problem-solving.
Theme song: “Respect” by Aretha Franklin, because computation deserves it.
This session is powered by a powerful flux capacitor.
Speakers
Structure determination
Debora Marks, Harvard Medical School
Rommie E. Amaro (chair), University of California, San Diego
Ramanathan Arvind, Argonne National Laboratory; University of Chicago
Jason Perry, Gilead Sciences Inc.
Drug design
John Chodera, Sloan Kettering Institute
David Baker, University of Washington
Steve Capuzzi, Vertex Pharmaceuticals
Celia Schiffer (chair), University of Massachusetts Chan Medical School
Bioinformatics / Systems biology
Marian Walhout, University of Massachusetts Chan Medical School
Janet George, Intel Corporation
Ivet Bahar (chair), University of Pittsburgh School of Medicine
Henry van dem Bedam, AtomWise Inc.
The complete list
Learn about all 11 symposia planned for Discover BMB 2023:- Protein Machines and Disorder
- Regulation of RNA
- Organelles, Mechanisms and Phase Properties of Cellular Quality Control
- Lipid Dynamics and Signals in Membrane and Protein Structure
- Frontiers in Carbohydrate Synthesis and Recognition
- Bias In, Bias Out in Data Science
- Cell Signaling — New Tools and Emerging Concepts
- Education and Professional Development
- Biochemistry of Elemental Cycling
- Advances in Organismal and Cellular Metabolism
- Artificial Intelligence and Machine Learning in Structural Biology, Drug Design and Systems Biology
Enjoy reading ASBMB Today?
Become a member to receive the print edition four times a year and the digital edition monthly.
Learn moreGet the latest from ASBMB Today
Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.
Latest in Science
Science highlights or most popular articles

How lipid metabolism shapes sperm development
Researchers at Hokkaido University identify the enzyme behind a key lipid in sperm development. The findings reveal how seminolipids shape sperm formation and may inform future diagnostics and treatments for male infertility.

Mass spec method captures proteins in native membranes
Yale scientists developed a mass spec protocol that keeps proteins in their native environment, detects intact protein complexes and tracks drug binding, offering a clearer view of membrane biology.

Laser-assisted cryoEM method preserves protein structure
University of Wisconsin–Madison researchers devised a method that prevents protein compaction during cryoEM prep, restoring natural structure for mass spec studies. The approach could expand high-resolution imaging to more complex protein systems.

Method sharpens proteome-wide view of structural changes
Researchers developed a method that improves limited proteolysis coupled with mass spectrometry, separating true changes from abundance or splicing effects.

Discoveries made possible by DNA
The discovery of DNA’s double helix revealed how genetic information is stored, copied and expressed. Revisit that breakthrough and traces how it laid the foundation for modern molecular biology, genomics and biotechnology.

Unraveling the language of histones
Philip Cole presented his research on how posttranslational modifications to histones are involved in gene expression and how these modifications could be therapeutically targeted to treat diseases like cancer.