Journal News

Cardiolipin helps fruit flies take flight

Long-lived phospholipid may underlie this insect’s extraordinary wing strength
Naushin Raheema
By Naushin Raheema
June 19, 2024

Researchers at New York University have shown that cardiolipin, a phospholipid component of the inner mitochondrial membrane in fruit flies, exists for more than 30 days and may allow these flies to sustain wing-beat frequencies of more than 100 beats per second. In addition, they found that cardiolipin lengthens the lifetimes of fruit fly mitochondrial respiratory protein complexes. Their work was published recently in the Journal of Biological Chemistry.

Cardiolipin stabilizes mitochondrial electron transport complexes by interacting with oxidative phosphorylation, or OXPHOS, proteins, which are critical for cellular energy generation. OXPHOS is the primary mechanism that fruit fly muscles use to generate adenosine triphosphate, a cell’s energy currency.

Previous studies have shown that cardiolipin interacts with OXPHOS proteins via noncovalent interactions and that the mitochondria require this connection to work at their best. Among mitochondrial proteins, OXPHOS proteins have exceptionally long lifetimes.  Most phospholipids boast a half-life of a few days. However, Mindong Ren, a research associate professor of anaesthesiology and lead author on the study, and his team showed that cardiolipin’s half-life is more than three times as long.

Ren compared proteins with cardiolipins: “Like long-lived proteins, cardiolipin can also be referred to as a long-lived lipid.”

This prompted researchers at NYU to wonder if the presence of cardiolipin impacts the longevity of OXPHOS proteins.

The team fed fruit flies, or Drosophila melanogaster, stable isotopes to measure the half-life of proteins and lipids. After feeding, these isotopes are incorporated into the flies’ existing muscle and other tissues.

“The fact that mature flies do not experience a change in their body mass makes Drosophila an excellent model organism for this experiment,” Ren said.

Since adult flies do not gain weight or grow new flight muscles, the heavy isotopes in their bodies can only be broken down by protein and lipid recycling inside their cells.

Because not all mitochondrial proteins are long-lived, Ren and his team decided to focus their work on a fruit fly tissue with minimal regeneration: the postmitotic flying muscle.

When the researchers ablated cardiolipin, the half-lives of respiratory protein complexes in the Drosophila flight muscle decreased by almost half.

These results indicate that respiratory proteins and cardiolipins live for a very long time, which is consistent with the notion that OXPHOS-containing domains in mitochondrial crista membranes are quite stable.

Ren said tightly packed cristae may explain cardiolipin and other proteins’ longevity. Crowding causes strong lipid–protein and protein–protein interactions but slows diffusion and molecular motion. Limited exposure to proteases and lipases, caused by strong interaction and slow diffusion, could increase the lifetimes of lipids and proteins.

Michael Schlame, a professor of anaesthesiology at NYU and supervising author of the study, compared cardiolipin and OXPHOS proteins to collaborators.

“We proved that cardiolipin and OXPHOS complexes last a long time and showed that they rely on each other,” Schlame said.

Ren said he was amazed at how much energy fruit flies can generate using complexes packed into small spaces.

Ren and Schlame agree that fruit flies could be useful models for researching cardiolipins and their functions in human diseases. Alterations in cardiolipin metabolism are associated with a plethora of disorders including ischemia or reperfusion injury, heart failure, cardiomyopathy and cancer.

Enjoy reading ASBMB Today?

Become a member to receive the print edition monthly and the digital edition weekly.

Learn more
Naushin Raheema
Naushin Raheema

Naushin Raheema is a science communicator and writer. She writes articles on health, space, genetics and the environment. She writes poems and does art journaling in her free time.
 

Get the latest from ASBMB Today

Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.

Latest in Science

Science highlights or most popular articles

The quest to treat and cure xerostomia
Interview

The quest to treat and cure xerostomia

July 23, 2024

Blake Warner, chief of the Salivary Disorders Unit at the NIH talks about his lab’s efforts to develop treatments for dry mouth.

There's more to blue cheese than just the stench
News

There's more to blue cheese than just the stench

July 21, 2024

Virginia Tech researchers discovered a way to synthesize a compound in the mold of blue cheese that has antibacterial and anticancer properties.

Engineering cells to broadcast their behavior can help scientists study their inner workings
News

Engineering cells to broadcast their behavior can help scientists study their inner workings

July 20, 2024

Researchers can use waves to transmit signals from the invisible processes and dynamics underlying how cells make decisions.

From the journals: JBC
Journal News

From the journals: JBC

July 19, 2024

Lung cancer cells resist ferroptosis. ORMDL3 in ulcerative colitis. Novel genetic variants in thyroid cancer. Read about these recent papers.

Seeking the sweet spot to beat a pig parasite
Journal News

Seeking the sweet spot to beat a pig parasite

July 16, 2024

Researchers extracted, separated and tested glycans from the porcine whipworm in an effort to determine the best way to develop treatments and vaccines.

Radioactive drugs strike cancer with precision
News

Radioactive drugs strike cancer with precision

July 14, 2024

The tumor-seeking radiopharmaceuticals are charting a new course in oncology, with promise for targeted treatments with fewer side effects.