Journal News

How lipid metabolism shapes sperm development

Meric Ozturk
Nov. 26, 2025

Sperm cells are among the most specialized in the body, designed for a single purpose: fertilization. Each carries DNA and propels itself toward an egg using a whip-like tail called a flagellum. Inside the testes, sperm develop through several well-defined stages, acquiring the structures and molecules needed for fertilization.

Hermann Steller, Rockefeller University, via National Institutes of Health, National Institute of General Medical Sciences image gallery.
Developing fruit fly spermatids require caspase activity (green) for the elimination of unwanted organelles and cytoplasm via apoptosis.

One crucial part of this transformation is the production of seminolipids, specialized fats found in developing sperm that are essential for their formation and function. Seminolipids are synthesized by fatty acyl-CoA reductase, or FAR, enzymes. Mammals have two different FAR enzymes, FAR1 and FAR2.

Although both FAR1 and FAR2 are known to synthesize fatty alcohols, their specific roles in seminolipid production had remained unclear. To pinpoint which enzyme was responsible, Ayano Tamazawa and colleagues at Hokkaido University analyzed mice lacking Far1 and Far2 to clarify their roles in seminolipid production and spermatogenesis. They found that loss of Far1 led to a dramatic decrease in seminolipids and impaired sperm development. The study was published in the Journal of Biological Chemistry.

Tamazawa said the findings show how the loss of seminolipids disrupts spermatogenesis, emphasizing the critical role of ether linkages in sperm development.
Seminolipids are categorized by the types of alkyl and acyl chains they contain, which differ in length and saturation. The most common seminolipid in the testis is O-C16:0/C16:0. Using liquid chromatography–tandem mass spectrometry, or LC–MS/MS, the researchers mapped the exact structure of these lipids.

High-resolution lipidomics analysis of seminolipids and SGalDAGs (3-sulfogalactosyl-1-acyl-2-acylglycerols) showed that both lipid types have similar side chains composed of saturated acyl or alkyl groups. The main difference is that SGalDAGs have a 1-acyl group, whereas seminolipids have a 1-alkyl group.

“This finding is unique because SGalDAGs have never been characterized in detail in the testis,” Tamazawa said.

However, the precise mechanisms by which seminolipids contribute to spermatogenesis, and why the C16:0/C16:0 structure predominates, remain unknown.

The researchers suggest that understanding seminolipid function could inform new diagnostic or therapeutic strategies for male infertility, potentially leading to lipid supplements or biomarkers.

Enjoy reading ASBMB Today?

Become a member to receive the print edition four times a year and the digital edition monthly.

Learn more
Meric Ozturk

Meric Ozturk is a Ph.D. student in biochemistry at Iowa State University and an ASBMB Today volunteer contributor.

Get the latest from ASBMB Today

Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.

Latest in Science

Science highlights or most popular articles

Life in four dimensions: When biology outpaces the brain
Profile

Life in four dimensions: When biology outpaces the brain

Jan. 27, 2026

Nobel laureate Eric Betzig will discuss his research on information transfer in biology from proteins to organisms at the 2026 ASBMB Annual Meeting.

Fasting, fat and the molecular switches that keep us alive
Interview

Fasting, fat and the molecular switches that keep us alive

Jan. 27, 2026

Nutritional biochemist and JLR AE Sander Kersten has spent decades uncovering how the body adapts to fasting. His discoveries on lipid metabolism and gene regulation reveal how our ancient survival mechanisms may hold keys to modern metabolic health.

Redefining excellence to drive equity and innovation
Award

Redefining excellence to drive equity and innovation

Jan. 22, 2026

Donita Brady will receive the ASBMB Ruth Kirschstein Award for Maximizing Access in Science at the ASBMB Annual Meeting, March 7–10, just outside of Washington, D.C.

Mining microbes for rare earth solutions
Award

Mining microbes for rare earth solutions

Jan. 14, 2026

Joseph Cotruvo, Jr., will receive the ASBMB Mildred Cohn Young Investigator Award at the ASBMB Annual Meeting, March 7–10, just outside of Washington, D.C.

Fueling healthier aging, connecting metabolism stress and time
Feature

Fueling healthier aging, connecting metabolism stress and time

Jan. 8, 2026

Biochemist Melanie McReynolds investigates how metabolism and stress shape the aging process. Her research on NAD+, a molecule central to cellular energy, reveals how maintaining its balance could promote healthier, longer lives.

Mapping proteins, one side chain at a time
Award

Mapping proteins, one side chain at a time

Jan. 7, 2026

Roland Dunbrack Jr. will receive the ASBMB DeLano Award for Computational Biosciences at the ASBMB Annual Meeting, March 7–10, just outside of Washington, D.C.