Journal News

JBC: A molecular garbage disposal has a role in packing the genome

Sasha Mushegian
April 1, 2018

Researchers from the Korea Institute of Science and Technology have found that the proteasome, an essential protein complex that breaks down proteins in cells, has an unexpected second function: directly regulating the packing of DNA in the nucleus. Their work was published in the Journal of Biological Chemistry.

The proteasome guards euchromatin from heterochromatin invasion.Courtesy OF Journal of Biological Chemistry

The proteasome breaks down proteins that the cell has tagged for degradation in a process called proteolysis. Dysfunction in the proteasome has been observed in diseases of many physiological systems, from the immune, nervous and cardiovascular systems to the whole organism’s aging processes. Increasingly, research suggests that, like a Swiss army knife with hidden tools, the proteasome is able to perform additional functions that don’t involve proteolysis.

DNA is organized in the nucleus in complexes with protein in a form called chromatin. Broadly speaking, loosely packed chromatin, or euchromatin, allows DNA to be transcribed and genes to be expressed, whereas tightly packed heterochromatin prevents gene expression.

In experiments using yeast cells, Hogyu David Seo, a graduate student in Daeyoup Lee’s lab, found that the proteasome could induce heterochromatin to form in some parts of the genome but stop it from spreading to other regions. Surprisingly, the mutations in the proteasome that revealed the proteasome’s effects on chromatin had no effect on proteolysis, meaning that the proteasome affects heterochromatin through an activity other than proteolysis. How it does this is not yet known.

The proteasome “can exert force on proteins and translocate, tilt, bend them,” Seo said. “So I believe the proteasome physically modulates proteins that act as a shield for heterochromatin. That’s how I think it might work.”

Heterochromatin formation and spread is of interest in the field of epigenetics, because changes in the chromatin state of cells in one generation potentially can be passed on to the next generation.

The proteasome “may have some effect on epigenetic programming inheritance because it affects the spreading of heterochromatin,” Seo said. “I’m not really sure how it might work, because there are so many ways that it could act, but I’m sure that it may exert some effects on epigenetic programming.”

For now, the team is focused on understanding how the proteasome regulates heterochromatin in organisms besides yeast, including mice and human cells.

“The proteasome engages with virtually every protein in our body with respect to the protein-degradation function,” Lee said. “We believe that our work is just a glimpse of what this protein can do ... Dissecting the proteasome functions will definitely help to develop therapeutic strategies to various diseases, such as neurological diseases and cancer."

Enjoy reading ASBMB Today?

Become a member to receive the print edition monthly and the digital edition weekly.

Learn more
Sasha Mushegian

Sasha Mushegian is a postdoctoral fellow at Georgetown University. Follow her on Twitter.

Get the latest from ASBMB Today

Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.

Latest in Science

Science highlights or most popular articles

The quest to treat and cure xerostomia
Interview

The quest to treat and cure xerostomia

July 23, 2024

Blake Warner, chief of the Salivary Disorders Unit at the NIH talks about his lab’s efforts to develop treatments for dry mouth.

There's more to blue cheese than just the stench
News

There's more to blue cheese than just the stench

July 21, 2024

Virginia Tech researchers discovered a way to synthesize a compound in the mold of blue cheese that has antibacterial and anticancer properties.

Engineering cells to broadcast their behavior can help scientists study their inner workings
News

Engineering cells to broadcast their behavior can help scientists study their inner workings

July 20, 2024

Researchers can use waves to transmit signals from the invisible processes and dynamics underlying how cells make decisions.

From the journals: JBC
Journal News

From the journals: JBC

July 19, 2024

Lung cancer cells resist ferroptosis. ORMDL3 in ulcerative colitis. Novel genetic variants in thyroid cancer. Read about these recent papers.

Seeking the sweet spot to beat a pig parasite
Journal News

Seeking the sweet spot to beat a pig parasite

July 16, 2024

Researchers extracted, separated and tested glycans from the porcine whipworm in an effort to determine the best way to develop treatments and vaccines.

Radioactive drugs strike cancer with precision
News

Radioactive drugs strike cancer with precision

July 14, 2024

The tumor-seeking radiopharmaceuticals are charting a new course in oncology, with promise for targeted treatments with fewer side effects.