Journal News

Lipoprotein(a): Silent killer or crystal ball?

Aswathy Rai
Dec. 27, 2022

Lipoproteins are made up of lipids and the proteins that transport lipids. Lipoproteins in the blood shuttle lipids such as cholesterol and triglycerides from the intestine to tissues throughout the body.

Lipoprotein (a), or Lp(a), consists of cholesterol and two proteins, Apo-B 100 and Apo(a). High levels of Lp(a) accelerate the buildup of cholesterol on artery walls, increasing a person’s risk for acute coronary syndrome, or ACS, a blanket term for several diseases associated with sudden reduced blood flow to the heart. In the U.S., ACS affects 15.5 million people and is a leading cause of death.

Elena Aikawa’s lab at Brigham and Women’s Hospital in Boston focuses on studying the drivers of ACS and finding diagnostic biomarkers to identify populations at risk for cardiovascular diseases. In a collaborative study with Pawel Szulc’s lab at the University of Lyon published in the Journal of Lipid Research, postdoc Francesca Bartoli–Leonard and a team of researchers assessed whether a relationship exists between high levels of Lp(a) and ACS in older men.

“With the American Heart Association estimating a person has a heart attack every 41 seconds, it’s imperative we as scientists investigate how to predict these events in patients before they happen,” Bartoli–Leonard said.

The Lp(a) levels in the blood are determined by variations in the LPAgene locus. Hence even individuals with healthy diet and exercise habits may be at high risk for ACS if they have genetic variants that produce high Lp(a) levels.

“Unfortunately, the guidelines from the American Heart Association only suggest clinicians measure lipoprotein(a) in individuals with hypercholesterolemia,” Bartoli–Leonard said, “meaning there are large parts of the American population who may be at risk for lipoprotein(a)-driven cardiovascular disease who are simply unaware.”

Doctors manage ACS with apheresis, a filtering process that removes Lp(a) particles from the blood. No drugs are approved for reducing Lp(a) levels; however, some therapies are currently in clinical trials.

“Clinical treatment for cardiovascular disease can be costly,” Bartoli–Leonard said. “We wanted to find a marker that could be assessed once, and for a relatively low cost, that may help stratify which patients will have a coronary event.”

To determine risk, the team tracked Lp(a) in 755 men over age 60 who live in the same community, following their coronary events and overall health for up to eight years. The researchers report that participants with blood Lp(a) levels higher than 50 milligrams per deciliter had an increased incidence of ACS.

For, this investigation, only Caucasian males living in France were recruited in the study population. “However, these results are consistent with reports that included more diverse ethnic backgrounds and those assigned female at birth," the authors wrote in the paper.

The study provides further evidence that Lp(a) levels predict the likelihood of a coronary event independent of common risk factors such as smoking, body mass index and cholesterol levels.

“We hope that our work, alongside with the other studies, which also look at Lp(a) in the general population, encourage the health care providers to assess Lp(a) routinely in the clinic,” Bartoli–Leonard said.

Enjoy reading ASBMB Today?

Become a member to receive the print edition four times a year and the digital edition monthly.

Learn more
Aswathy Rai

Aswathy N. Rai is an assistant teaching professor and undergraduate coordinator at Mississippi State University's department of biochemistry, molecular biology, entomology and plant pathology. She is an ASBMB Today volunteer contributor.

Get the latest from ASBMB Today

Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.

Latest in Science

Science highlights or most popular articles

Mining microbes for rare earth solutions
Award

Mining microbes for rare earth solutions

Jan. 14, 2026

Joseph Cotruvo, Jr., will receive the ASBMB Mildred Cohn Young Investigator Award at the ASBMB Annual Meeting, March 7–10, just outside of Washington, D.C.

Fueling healthier aging, connecting metabolism stress and time
Feature

Fueling healthier aging, connecting metabolism stress and time

Jan. 8, 2026

Biochemist Melanie McReynolds investigates how metabolism and stress shape the aging process. Her research on NAD+, a molecule central to cellular energy, reveals how maintaining its balance could promote healthier, longer lives.

Mapping proteins, one side chain at a time
Award

Mapping proteins, one side chain at a time

Jan. 7, 2026

Roland Dunbrack Jr. will receive the ASBMB DeLano Award for Computational Biosciences at the ASBMB Annual Meeting, March 7–10, just outside of Washington, D.C.

Exploring the link between lipids and longevity
Profile

Exploring the link between lipids and longevity

Jan. 2, 2026

Meng Wang will present her work on metabolism and aging at the ASBMB Annual Meeting, March 7-10, just outside of Washington, D.C.

Defining a ‘crucial gatekeeper’ of lipid metabolism
Award

Defining a ‘crucial gatekeeper’ of lipid metabolism

Dec. 31, 2025

George Carman receives the Herbert Tabor Research Award at the ASBMB Annual Meeting, March 7–10, just outside of Washington, D.C.

The science of staying strong
Feature

The science of staying strong

Dec. 26, 2025

Muscles power every movement, but they also tell the story of aging itself. Scientists are uncovering how strength fades, why some species resist it and what lifestyle and molecular clues could help preserve muscle health for life.