Journal News

New chemical strategy boosts accuracy in proteomics

Vanshika Patel
Nov. 6, 2025

Overlabeling of peptides in proteomics mass spectrometry reduces protein identification and quantitation precision. In proteomics sample preparation, a chemical called N-hydroxysuccinimide, or NHS, is commonly used in tagging proteins to identify proteins for quantitation. However, NHS can also react with other amino acid residues, forming unwanted O-ester derivatives, which bond to oxygen atoms of amino acids such as serine, tyrosine and threonine, complicating analysis. While existing methods, such as hydroxylamine treatment, have been used to reduce excess NHS esters, it is not fully effective, and scientists lack methods to sufficiently remove overlabeled peptides.

Yana Demyanenko and a team of researchers based in the U.K. and Germany published an article in Molecular & Cellular Proteomics, where they developed a methylamine-based method to remove these O-ester modifications. They found that methylamine was the most effective in reducing overlabeled peptides among various tested reagents, such as hydroxylamine, O-methoxylamine HCl, hydrazine hydrate, Tris and ammonium hydroxide. In contrast, standard labeling without quenching led to over 25% overlabeled peptides, while hydroxylamine treatment reduced this to only 10%. Methylamine, however, reduced the overlabeling to less than 1% without affecting the labeling rate or causing additional modifications. Future research will apply this methylamine-based approach to different proteomics workflows to improve peptide identification and quantitation.

Enjoy reading ASBMB Today?

Become a member to receive the print edition four times a year and the digital edition monthly.

Learn more
Vanshika Patel

Vanshika Patel is a Ph.D. candidate in the pharmaceutical sciences department at the University of Maryland, Baltimore. She studies vitamin A signaling and the ERK 1/2 pathway in asthma in the Kane lab. She is an ASBMB Today volunteer contributor.

Get the latest from ASBMB Today

Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.

Latest in Science

Science highlights or most popular articles

Building the blueprint to block HIV
Profile

Building the blueprint to block HIV

Dec. 11, 2025

Wesley Sundquist will present his work on the HIV capsid and revolutionary drug, Lenacapavir, at the ASBMB Annual Meeting, March 7–10, in Maryland.

Gut microbes hijack cancer pathway in high-fat diets
Journal News

Gut microbes hijack cancer pathway in high-fat diets

Dec. 10, 2025

Researchers at the Feinstein Institutes for Medical Research found that a high-fat diet increases ammonia-producing bacteria in the gut microbiome of mice, which in turn disrupts TGF-β signaling and promotes colorectal cancer.

Mapping fentanyl’s cellular footprint
Journal News

Mapping fentanyl’s cellular footprint

Dec. 4, 2025

Using a new imaging method, researchers at State University of New York at Buffalo traced fentanyl’s effects inside brain immune cells, revealing how the drug alters lipid droplets, pointing to new paths for addiction diagnostics.

Designing life’s building blocks with AI
Profile

Designing life’s building blocks with AI

Dec. 2, 2025

Tanja Kortemme, a professor at the University of California, San Francisco, will discuss her research using computational biology to engineer proteins at the 2026 ASBMB Annual Meeting.

Cholesterol as a novel biomarker for Fragile X syndrome
Journal News

Cholesterol as a novel biomarker for Fragile X syndrome

Nov. 28, 2025

Researchers in Quebec identified lower levels of a brain cholesterol metabolite, 24-hydroxycholesterol, in patients with fragile X syndrome, a finding that could provide a simple blood-based biomarker for understanding and managing the condition.

How lipid metabolism shapes sperm development
Journal News

How lipid metabolism shapes sperm development

Nov. 26, 2025

Researchers at Hokkaido University identify the enzyme behind a key lipid in sperm development. The findings reveal how seminolipids shape sperm formation and may inform future diagnostics and treatments for male infertility.