MCSs stick the landing
Membrane contact sites, or MCSs, represent the ultimate intracellular duct tape — binding organelles together within eukaryotic cells to promote growth. Enabled by tethering proteins, MCSs are a coordinating nexus that fosters intermembrane exchange and signaling.
As conduits for lipid and small metabolite transfer between organelle membranes, MCSs are key regulators of metabolism. As structural elements linking intracellular membranes, MCSs control membrane organization and protect against membrane stresses. As platforms for important signaling receptors, MCSs initiate cellular responses to regulatory or environmental cues.
The recognition of MCSs as key regulators of cell growth is underscored by new discoveries of MCS function in cellular disease and infection.
Keywords: Membrane contact sites, membrane stress, mitochondrial regulation, nonvesicular transport, lipid transport, membrane structure, lipid metabolism, lipid regulation.
Who should attend: Molecular cell biologists and membrane biochemists who marvel at how membrane dynamics regulates metabolic function and organelle organization.
Theme song: Dave Fenley cover of “Stuck on You” by Lionel Richie
This session is powered by the unsung heroes of membrane and lipid research.
Submit an abstract
Abstract submission begins Sept. 14. If you submit by Oct. 12, you'll get a decision by Nov. 1. The regular submission deadline is Nov. 30. See the categories.
Membrane contact sites
Regulation of lipid transfer and metabolism at membrane contact sites
Hongyuan Yang, University of Texas Health Science Center at Houston

Jen Liou (chair), University of Texas Southwestern Medical Center
Alexandre Toulmay, University of Texas Southwestern Medical Center
Arash Bashirullah, University of Wisconsin–Madison
Membrane signaling at membrane contact sites
Thomas Simmen (chair), University of Alberta
Jay Tan, University of Pittsburgh
Alissa Weaver, Vanderbilt University
Chi-Lun Chang, St. Jude Children's Research Hospital
Specialized membrane contact site functions
Isabelle Derré, University of Virginia
Aaron Neiman, Stony Brook University
Christopher T. Beh (chair), Simon Fraser University
Enjoy reading ASBMB Today?
Become a member to receive the print edition four times a year and the digital edition monthly.
Learn moreGet the latest from ASBMB Today
Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.
Latest in Science
Science highlights or most popular articles

Mining microbes for rare earth solutions
Joseph Cotruvo, Jr., will receive the ASBMB Mildred Cohn Young Investigator Award at the ASBMB Annual Meeting, March 7–10, just outside of Washington, D.C.

Fueling healthier aging, connecting metabolism stress and time
Biochemist Melanie McReynolds investigates how metabolism and stress shape the aging process. Her research on NAD+, a molecule central to cellular energy, reveals how maintaining its balance could promote healthier, longer lives.

Mapping proteins, one side chain at a time
Roland Dunbrack Jr. will receive the ASBMB DeLano Award for Computational Biosciences at the ASBMB Annual Meeting, March 7–10, just outside of Washington, D.C.

Exploring the link between lipids and longevity
Meng Wang will present her work on metabolism and aging at the ASBMB Annual Meeting, March 7-10, just outside of Washington, D.C.

Defining a ‘crucial gatekeeper’ of lipid metabolism
George Carman receives the Herbert Tabor Research Award at the ASBMB Annual Meeting, March 7–10, just outside of Washington, D.C.

The science of staying strong
Muscles power every movement, but they also tell the story of aging itself. Scientists are uncovering how strength fades, why some species resist it and what lifestyle and molecular clues could help preserve muscle health for life.