
Dancing with metals: Iron copper and reactive sparks
"Sola dosis facit venenum" or "the dose makes the poison." This timeless adage holds particularly true in the realm of metals and oxidants, where the delicate balance between sufficiency and excess is paramount. Inadequate levels render an organism incapable of proper functioning, while excessive quantities can inflict irreversible harm. However, at the precise dosage, a harmonious symphony resonates within cellular systems.
While iron and copper play crucial roles in the functioning of numerous cellular proteins, excessive amounts can trigger the cell death mechanisms of ferroptosis and cuproptosis, respectively. Although oxidation is essential for vital cellular processes such as protein folding and signal transduction, excessive oxidation can harm cellular components, leading to cell death. How does a cell effectively regulate the availability of these factors and mitigate their toxic effects?
Submit an abstract
Abstract submission begins Sept. 14. If you submit by Oct. 12, you'll get a decision by Nov. 1. The regular submission deadline is Nov. 30. See the categories.
This compelling question will be addressed at our symposium. Esteemed investigators in the fields of iron, copper and redox biology will cover topics that include organellar redox metabolism and vulnerabilities, mechanisms of metal-induced cell death and metal stress, as well as metal acquisition and dependencies.
Keywords: Copper, iron, redox, metals, reactive oxygen species.
Who should attend: Metalheads and redox biologists, along with individuals keen on delving into the realms of iron, copper and selenium and the intricacies of oxidative stress.
Theme song: “Iron Man” by Black Sabbath. No explanation necessary.
This session is powered by the Fenton reaction.
Redox and metals in biology
Advances in redox homeostasis in biology and disease
Kivanç Birsoy, Rockefeller University
Jessica Spinelli, University of Massachusetts Chan Medical School

Urbain Weyemi (chair), National Cancer Institute
Elena Piskounova, Weill Cornell Medicine
Iron in redox biology: mechanisms and regulation
Adam Hughes, University of Utah
James Wohlschlegel, UCLA
Sarah-Maria Fendt, VIB–KU Leuven Center for Cancer Biology
Gina DeNicola (chair), Moffitt Cancer Center
Copper in redox biology: From fundamental chemistry to cellular function
Katherine Franz, Duke University
Peter Tsvetkov, Broad Institute of MIT and Harvard
Deborah Fass, Weizmann Institute of Science
Siavash Kurdistani (chair), UCLA
Enjoy reading ASBMB Today?
Become a member to receive the print edition four times a year and the digital edition monthly.
Learn moreGet the latest from ASBMB Today
Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.
Latest in Science
Science highlights or most popular articles

What’s in a diagnosis?
When Jessica Foglio’s son Ben was first diagnosed with cerebral palsy, the label didn’t feel right. Whole exome sequencing revealed a rare disorder called Salla disease. Now Jessica is building community and driving research for answers.

Peer through a window to the future of science
Aaron Hoskins of the University of Wisconsin–Madison and Sandra Gabelli of Merck, co-chairs of the 2026 ASBMB annual meeting, to be held March 7–10, explain how this gathering will inspire new ideas and drive progress in molecular life sciences.

Glow-based assay sheds light on disease-causing mutations
University of Michigan researchers create a way to screen protein structure changes caused by mutations that may lead to new rare disease therapeutics.

How signals shape DNA via gene regulation
A new chromatin isolation technique reveals how signaling pathways reshape DNA-bound proteins, offering insight into potential targets for precision therapies. Read more about this recent MCP paper.

A game changer in cancer kinase target profiling
A new phosphonate-tagging method improves kinase inhibitor profiling, revealing off-target effects and paving the way for safer, more precise cancer therapies tailored to individual patients. Read more about this recent MCP paper.

How scientists identified a new neuromuscular disease
NIH researchers discover Morimoto–Ryu–Malicdan syndrome, after finding shared symptoms and RFC4 gene variants in nine patients, offering hope for faster diagnosis and future treatments.