Dancing with metals: Iron copper and reactive sparks
"Sola dosis facit venenum" or "the dose makes the poison." This timeless adage holds particularly true in the realm of metals and oxidants, where the delicate balance between sufficiency and excess is paramount. Inadequate levels render an organism incapable of proper functioning, while excessive quantities can inflict irreversible harm. However, at the precise dosage, a harmonious symphony resonates within cellular systems.
While iron and copper play crucial roles in the functioning of numerous cellular proteins, excessive amounts can trigger the cell death mechanisms of ferroptosis and cuproptosis, respectively. Although oxidation is essential for vital cellular processes such as protein folding and signal transduction, excessive oxidation can harm cellular components, leading to cell death. How does a cell effectively regulate the availability of these factors and mitigate their toxic effects?
Submit an abstract
Abstract submission begins Sept. 14. If you submit by Oct. 12, you'll get a decision by Nov. 1. The regular submission deadline is Nov. 30. See the categories.
This compelling question will be addressed at our symposium. Esteemed investigators in the fields of iron, copper and redox biology will cover topics that include organellar redox metabolism and vulnerabilities, mechanisms of metal-induced cell death and metal stress, as well as metal acquisition and dependencies.
Keywords: Copper, iron, redox, metals, reactive oxygen species.
Who should attend: Metalheads and redox biologists, along with individuals keen on delving into the realms of iron, copper and selenium and the intricacies of oxidative stress.
Theme song: “Iron Man” by Black Sabbath. No explanation necessary.
This session is powered by the Fenton reaction.
Redox and metals in biology
Advances in redox homeostasis in biology and disease
Kivanç Birsoy, Rockefeller University
Jessica Spinelli, University of Massachusetts Chan Medical School
Urbain Weyemi (chair), National Cancer Institute
Elena Piskounova, Weill Cornell Medicine
Iron in redox biology: mechanisms and regulation
Adam Hughes, University of Utah
James Wohlschlegel, UCLA
Sarah-Maria Fendt, VIB–KU Leuven Center for Cancer Biology
Gina DeNicola (chair), Moffitt Cancer Center
Copper in redox biology: From fundamental chemistry to cellular function
Katherine Franz, Duke University
Peter Tsvetkov, Broad Institute of MIT and Harvard
Deborah Fass, Weizmann Institute of Science
Siavash Kurdistani (chair), UCLA
Enjoy reading ASBMB Today?
Become a member to receive the print edition four times a year and the digital edition weekly.
Learn moreGet the latest from ASBMB Today
Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.
Latest in Science
Science highlights or most popular articles
RNA binding proteins with benefits
Blanton Tolbert studies the biochemical mechanisms of RNA virus replication while working to make science more accessible, and more interesting, for all people.
A proteomic hunt for phosphosites in the aging brain
In older mice, researchers found more enzymes that phosphorylate other proteins and changes in phosphorylation levels in proteins associated with neurodegeneration.
What if a virus could reverse antibiotic resistance?
In promising experiments, phage therapy forces bacteria into a no-win dilemma that lowers their defenses against drugs they’d evolved to withstand.
Tapping into bacterial conversations
Bonnie Bassler has helped usher in a new branch of science centered on quorum sensing, the process by which bacteria communicate with one another and orchestrate collective tasks.
From the journals: JLR
Can diacylglycerol combat athlete hyperuricemia? Inhibiting a cardiac enzyme improves metabolism. Targeting angiopoietins to combat liver injury. Read about papers on these topics recently published in the Journal of Lipid Research.
Liver enzyme holds key to adjusting to high-protein diets
Researchers at the University of Geneva show that glutamate dehydrogenase controls blood alkalinity during fasting.