Journal News

JBC: A phospholipid pathway from plants to parasites

Sasha Mushegian
June 1, 2018

Findings by researchers at Washington University in St. Louis may aid in the development of therapies to treat parasitic infections, including malaria, and may help plant scientists one day produce hardier crops. The research team’s work was published in the Journal of Biological Chemistry.

A study explains how structures of Arabidopsis phosphoethanolamine methyltransferase, or PMT, (left) are evolutionarily related to PMT sequences from different organisms. Phosphatidylcholine (right) is PMT's product. Courtesy of Soon Goo Lee and Joseph JezCholine is an essential nutrient that we get from certain foods, including eggs, meat, leafy greens and nuts. The human body converts choline into phosphocholine, or pCho, which it in turn converts into (among other essential building blocks) phosphatidylcholine, or PtdCho, a component of cell membranes. Plants can’t acquire the nutrient from the environment and so must synthesize pCho from scratch. The biochemical pathway plants use to synthesize pCho also is found in nematodes and the malaria parasite Plasmodium.

In plants, the enzymatic reaction that produces pCho is essential for normal function and for responding to stresses. Plant pCho is converted into PtdCho, which builds membranes that can adjust their rigidity in response to temperature changes. pCho also gets converted into molecules that help plants survive high salt. The enzymes that produce plant pCho are called phosphoethanolamine methyltransferases, or PMTs.

Soon Goo Lee, a postdoctoral research fellow at Washington University in the lab of Joseph Jez (a JBC associate editor), has been fascinated by PMTs in both plants and parasites for many years.

“Understanding the PMT enzyme is key to engineer plants with improved stress tolerance and enhanced nutrients,” Lee said.

Since the PMT-catalyzed pathway is found in parasites but not humans, Lee and Jez’s team is looking for inhibitors of this enzyme to treat diseases caused by these parasites.

The new study explains that PMTs of the model plant Arabidopsis thaliana share core features of PMTs from parasites, with almost identical structure at the active site. But the plant PMTs are roughly twice as large as the parasite ones, with large sections that can rearrange themselves to carry out multiple chemical reactions.

The three PMT types in the plant — which were thought to carry out the same function — actually appear to play different roles depending on where they are found in the plant. Plant growth experiments showed that one type of PMT was essential for root development and salt tolerance, whereas the other two had no effect on roots and instead seemed to be found primarily in leaves.

In the long run, this big-picture view of PMTs in different organisms offers routes to engineer enzymes with different functions. “I love these kinds of stories,” Lee said, “where I can look from the atomic (structure) to the physiological level to explain why these enzymes have different forms and how they work.”

Enjoy reading ASBMB Today?

Become a member to receive the print edition monthly and the digital edition weekly.

Learn more
Sasha Mushegian

Sasha Mushegian is a postdoctoral fellow at Georgetown University. Follow her on Twitter.

Related articles

From the journals: JBC
Ken Farabaugh
Peering into ocular waste recycling
Marissa Locke Rottinghaus
From the journals: JBC
Ken Farabaugh
From the journals: JBC
Ken Farabaugh
From the journals: JBC
Isabel Casas

Get the latest from ASBMB Today

Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.

Latest in Science

Science highlights or most popular articles

AI harnesses tumor genetics to predict treatment response
News

AI harnesses tumor genetics to predict treatment response

Feb. 18, 2024

Many paths lead to cancer resistance; artificial intelligence can decode them all simultaneously.

Progression of ALS linked to a membrane and an enzyme
News

Progression of ALS linked to a membrane and an enzyme

Feb. 17, 2024

Diminished activities of the enzyme TBK1 in mitochondrial-associated membrane reduces motor neurons’ tolerance to stressors, a causative factor in the disease.

From the journals: JLR
Journal News

From the journals: JLR

Feb. 16, 2024

Breaking down atherosclerotic plaque. Location matters in liver disease. A lipidomic profile drives liver disease. Read about recent papers on these topics.

Sibling study reveals mechanism for genetic disease
Journal News

Sibling study reveals mechanism for genetic disease

Feb. 13, 2024

Using proteomics experiments, researchers found that old proteins pile up in the mitochondria of people with a form of adult-onset muscular dystrophy.

Why don’t fruit bats get diabetes?
News

Why don’t fruit bats get diabetes?

Feb. 11, 2024

New understanding of how these animals have adapted to a high-sugar diet could lead to treatments for people.

The remaining frontiers in fighting hepatitis C
Interview

The remaining frontiers in fighting hepatitis C

Feb. 10, 2024

Charles Rice, whose work was key to finding treatments for this life-threatening virus, discusses the scientific journey and challenges that persist.