Journal News

JBC: A sugar-attaching enzyme defines colon cancer

Sasha Mushegian
June 01, 2018

Researchers have identified an enzyme that is absent in healthy colon tissue but abundant in colon cancer cells, according to a paper published in the Journal of Biological Chemistry.

The enzyme GalNAc-T6 is upregulated selectively in colon adenocarcinomas, and its expression is associated with a cancerlike growth pattern.courtesy of Kirstine Lavrsen/University of Copenhagen

The enzyme appears to drive the conversion of normal colon tissue into cancer by attaching sugar molecules, or glycans, to certain proteins in the cell. Understanding the role that sugar-modified proteins play in healthy and cancerous cells is an emerging area of cancer biology that may lead to new therapies.

Hans Wandall’s team at the University of Copenhagen studied 20 enzymes that initiate the first step in a particular kind of glycan modification, called GalNAc-type O-glycosylation, found on diverse proteins. These enzymes, called GalNAc transferases, or GalNAc-Ts, are found in different amounts in different tissues, but their functions are poorly understood.

Wandall’s team, led by then-graduate student Kirstine Lavrsen, found that one of the GalNAc-Ts, called GalNAc-T6, was absent in healthy colon tissue but abundant in colon cancer cells. The team used CRISPR/Cas engineering of a colon cancer cell line with and without GalNAc-T6 to understand to which proteins the enzyme helped attach sugars and what effect this had on the cells.

“When we look at the 3D growth of a cancer cell line that has GalNAc-T6, it can form tubular structures with formation of something that looks like colon cancer tissue,” Wandall said. “When we take out GalNAc-T6, then suddenly the tissue formation changes to look more like the crypt structures that you would find in a healthy colon.”

Using mass spectrometry, the team categorized the proteins that GalNAc-T6 acted on in these cells.

“Our data suggest (that) this specific enzyme seems to affect a subset of proteins that could be involved in cell-cell adhesion,” Wandall said. In other words, the glycan modifications changed the patterns in which cells stuck together, leading the cells to develop as something that looked more like a tumor than a healthy tissue.

The next step is to understand precisely why adding sugars to the specific protein sites modified by GalNAc-T6 leads colon cells to develop abnormally. Glycan modifications can affect protein function in myriad ways. For example, they can make proteins that usually are cleaved into two unable to be cleaved, or prevent two proteins from binding to each other.

Wandall hopes that understanding glycosylation in cancer cells will lead to better early diagnostic tools, drugs or immunotherapies.

“Glycans add an additional context layer that could help us create more specific interventions,” he said.

“Glycans look so different in cancer compared to normal tissue, and it’s a really understudied field,” Lavrsen said. “There are a lot of things to be discovered.”

Sasha Mushegian

Sasha Mushegian is a postdoctoral fellow at Georgetown University. Follow her on Twitter.

Join the ASBMB Today mailing list

Sign up to get updates on articles, interviews and events.

Latest in Science

Science highlights or most popular articles

A proposal to use CRISPR to prevent opioid overdoses is a useless approach to healthcare
News

A proposal to use CRISPR to prevent opioid overdoses is a useless approach to healthcare

September 27, 2020

Nicholas McCarty of New York University writes that genetically engineering drug users’ brains is short-sighted, reactive and unnecessary.

Lessons from how the polio vaccine
News

Lessons from how the polio vaccine

September 26, 2020

Despite the polio vaccine’s long-term success, manufacturers, government leaders and the nonprofit that funded the vaccine’s development made several missteps.

From the journals: MCP
Journal News

From the journals: MCP

September 25, 2020

How marine iguanas mark their turf. A new way to study Parkinson’s disease. Glycosylation in influenza A. Read about recent papers on these topics in the journal Molecular & Cellular Proteomics.

Gut microbiome shaped by dietary sphingolipids
Journal News

Gut microbiome shaped by dietary sphingolipids

September 22, 2020

A new tracing method described in the Journal of Lipid Research offers clues on how a macronutrient interacts with the microbes that live inside us.

From the journals: JBC
Journal News

From the journals: JBC

September 21, 2020

Proteases that fire up the flu. A sulfate pocket to take out MRSA. Proteins that prompt cancer protrusions. Read about recent papers on these topics and more.

AeroNabs promise powerful, inhalable protection against COVID-19
News

AeroNabs promise powerful, inhalable protection against COVID-19

September 20, 2020

As the world awaits vaccines to bring the COVID-19 pandemic under control, UC San Francisco scientists have devised a novel approach to halting the spread of SARS-CoV-2, the virus that causes the disease.