Journal News

JBC: A sugar-attaching enzyme defines colon cancer

Sasha Mushegian
June 1, 2018

Researchers have identified an enzyme that is absent in healthy colon tissue but abundant in colon cancer cells, according to a paper published in the Journal of Biological Chemistry.

The enzyme GalNAc-T6 is upregulated selectively in colon adenocarcinomas, and its expression is associated with a cancerlike growth pattern.courtesy of Kirstine Lavrsen/University of Copenhagen

The enzyme appears to drive the conversion of normal colon tissue into cancer by attaching sugar molecules, or glycans, to certain proteins in the cell. Understanding the role that sugar-modified proteins play in healthy and cancerous cells is an emerging area of cancer biology that may lead to new therapies.

Hans Wandall’s team at the University of Copenhagen studied 20 enzymes that initiate the first step in a particular kind of glycan modification, called GalNAc-type O-glycosylation, found on diverse proteins. These enzymes, called GalNAc transferases, or GalNAc-Ts, are found in different amounts in different tissues, but their functions are poorly understood.

Wandall’s team, led by then-graduate student Kirstine Lavrsen, found that one of the GalNAc-Ts, called GalNAc-T6, was absent in healthy colon tissue but abundant in colon cancer cells. The team used CRISPR/Cas engineering of a colon cancer cell line with and without GalNAc-T6 to understand to which proteins the enzyme helped attach sugars and what effect this had on the cells.

“When we look at the 3D growth of a cancer cell line that has GalNAc-T6, it can form tubular structures with formation of something that looks like colon cancer tissue,” Wandall said. “When we take out GalNAc-T6, then suddenly the tissue formation changes to look more like the crypt structures that you would find in a healthy colon.”

Using mass spectrometry, the team categorized the proteins that GalNAc-T6 acted on in these cells.

“Our data suggest (that) this specific enzyme seems to affect a subset of proteins that could be involved in cell-cell adhesion,” Wandall said. In other words, the glycan modifications changed the patterns in which cells stuck together, leading the cells to develop as something that looked more like a tumor than a healthy tissue.

The next step is to understand precisely why adding sugars to the specific protein sites modified by GalNAc-T6 leads colon cells to develop abnormally. Glycan modifications can affect protein function in myriad ways. For example, they can make proteins that usually are cleaved into two unable to be cleaved, or prevent two proteins from binding to each other.

Wandall hopes that understanding glycosylation in cancer cells will lead to better early diagnostic tools, drugs or immunotherapies.

“Glycans add an additional context layer that could help us create more specific interventions,” he said.

“Glycans look so different in cancer compared to normal tissue, and it’s a really understudied field,” Lavrsen said. “There are a lot of things to be discovered.”

Enjoy reading ASBMB Today?

Become a member to receive the print edition monthly and the digital edition weekly.

Learn more
Sasha Mushegian

Sasha Mushegian is a postdoctoral fellow at Georgetown University. Follow her on Twitter.

Related articles

No oxygen? No problem
Marissa Locke Rottinghaus
From the journals: JBC
Ken Farabaugh
From the journals: MCP
Elisabeth Marnik
From the journals: JBC
Ken Farabaugh
From the journals: JBC
Ken Farabaugh

Get the latest from ASBMB Today

Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.

Latest in Science

Science highlights or most popular articles

National Academies propose initiative to sequence all RNA molecules
News

National Academies propose initiative to sequence all RNA molecules

April 19, 2024

Unlocking the epitranscriptome could transform health, medicine, agriculture, energy and national security.

From the journals: JLR
Journal News

From the journals: JLR

April 19, 2024

What can you do with artificial lipoproteins? A new key to angiogenesis. Flavonoids counteract oxidative stress. Read about recent papers on these topics.

Iron could be key to treating a global parasitic disease
Journal News

Iron could be key to treating a global parasitic disease

April 16, 2024

A study has found that leishmaniasis causes body-wide changes in iron balance, leading to red blood cell damage.

Environmental DNA is everywhere
News

Environmental DNA is everywhere

April 14, 2024

The ability to extract trace bits of DNA from soil, water, and even air is revolutionizing science. Are there pitfalls?

Early COVID-19 research is riddled with poor methods and low-quality results
News

Early COVID-19 research is riddled with poor methods and low-quality results

April 13, 2024

The pandemic worsened, but didn’t create, this problem for science.

From the journals: MCP
Journal News

From the journals: MCP

April 12, 2024

Three views of mass spec: analyzing secreted protein spectra, imaging mass spectrometry for clinical use and spectral libraries for MS data analysis. Read about these recent papers.