Calcium channel linked to cancer drug resistance
Chemotherapy tumor resistance develops after long-term regimens of the platinum-containing anticancer drug carboplatin. Scientists have observed an enlarged cell morphology and involvement of T-type calcium channels in resistant ovarian cancer cells. Sooyun Kim and researchers at Seoul National University wanted to find out if these characteristics also relate to carboplatin resistance seen in retinoblastoma, an aggressive childhood cancer. They published their findings in a recent Journal of Biological Chemistry article.

Immunofluorescence staining and pharmacological inhibition experiments identified the Cav3.3 channel as the overexpressed calcium channel subtype that contributes to the sustained currents. The authors further showed that messenger RNA expression levels only for Cav3.3 increased after carboplatin exposure, while the levels for the other Cav3.1 and Cav3.2 subtypes slightly decreased in the resistant cells relative to the original retinoblastoma strain.
Finally, the researchers determined that treating the resistant retinoblastoma giant cells with a Cav3.3 inhibitor increased their sensitivity to carboplatin. They only observed this increase in carboplatin sensitivity in the resistant cells and not in the original retinoblastoma strain, indicating that Cav3.3 plays a specific role in drug resistance.
Cav3.3 could potentially be a target for the treatment of carboplatin-resistant retinoblastoma. Future experiments will help identify additional proteins and pathways that may connect Cav3.3 to chemotherapeutic resistance in retinoblastoma and whether the involvement of Cav3.3 over the other channel subtypes is observed in other cancers.
Enjoy reading ASBMB Today?
Become a member to receive the print edition four times a year and the digital edition monthly.
Learn moreGet the latest from ASBMB Today
Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.
Latest in Science
Science highlights or most popular articles

AI in the lab: The power of smarter questions
An assistant professor discusses AI's evolution from a buzzword to a trusted research partner. It helps streamline reviews, troubleshoot code, save time and spark ideas, but its success relies on combining AI with expertise and critical thinking.

Training AI to uncover novel antimicrobials
Antibiotic resistance kills millions, but César de la Fuente’s lab is fighting back. By pairing AI with human insight, researchers are uncovering hidden antimicrobial peptides across the tree of life with a 93% success rate against deadly pathogens.

AI-designed biomarker improves malaria diagnostics
Researchers from the University of Melbourne engineered Plasmodium vivax diagnostic protein with enhanced yield and stability while preserving antibody-binding, paving the way for more reliable malaria testing.

Matrix metalloproteinase inhibitor reduces cancer invasion
Scientists at the Mayo Clinic engineered a TIMP-1 protein variant that selectively inhibits MMP-9 and reduces invasion of triple-negative breast cancer cells, offering a promising tool for targeted cancer research.

Antibiotic sensor directly binds drug in resistant bacteria
Researchers at Drexel University uncover how the vancomycin-resistant bacterial sensor binds to the antibiotic, offering insights to guide inhibitor design that restores antibiotic effectiveness against hospital-acquired infections.

ApoA1 reduce atherosclerotic plaques via cell death pathway
Researchers show that ApoA1, a key HDL protein, helps reduce plaque and necrotic core formation in atherosclerosis by modulating Bim-driven macrophage death. The findings reveal new insights into how ApoA1 protects against heart disease.