Calcium channel linked to cancer drug resistance
Chemotherapy tumor resistance develops after long-term regimens of the platinum-containing anticancer drug carboplatin. Scientists have observed an enlarged cell morphology and involvement of T-type calcium channels in resistant ovarian cancer cells. Sooyun Kim and researchers at Seoul National University wanted to find out if these characteristics also relate to carboplatin resistance seen in retinoblastoma, an aggressive childhood cancer. They published their findings in a recent Journal of Biological Chemistry article.
Immunofluorescence staining and pharmacological inhibition experiments identified the Cav3.3 channel as the overexpressed calcium channel subtype that contributes to the sustained currents. The authors further showed that messenger RNA expression levels only for Cav3.3 increased after carboplatin exposure, while the levels for the other Cav3.1 and Cav3.2 subtypes slightly decreased in the resistant cells relative to the original retinoblastoma strain.
Finally, the researchers determined that treating the resistant retinoblastoma giant cells with a Cav3.3 inhibitor increased their sensitivity to carboplatin. They only observed this increase in carboplatin sensitivity in the resistant cells and not in the original retinoblastoma strain, indicating that Cav3.3 plays a specific role in drug resistance.
Cav3.3 could potentially be a target for the treatment of carboplatin-resistant retinoblastoma. Future experiments will help identify additional proteins and pathways that may connect Cav3.3 to chemotherapeutic resistance in retinoblastoma and whether the involvement of Cav3.3 over the other channel subtypes is observed in other cancers.
Enjoy reading ASBMB Today?
Become a member to receive the print edition four times a year and the digital edition monthly.
Learn moreGet the latest from ASBMB Today
Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.
Latest in Science
Science highlights or most popular articles

Protein modifications drive lung cancer resistance
New assay enriches protein modifications in a single process, enabling detection of key changes in drug-resistant lung cancer cells that may guide future therapies.

How antigen-processing proteins shape immunity
Researchers show how components of the antigen processing machinery shape the immunopeptidome, offering insights into immune regulation and cancer biology.

New chemical strategy boosts accuracy in proteomics
Researchers develop a methylamine-based method that nearly eliminates peptide overlabeling in proteomics, improving accuracy in protein identification and quantitation.

Understanding the roles of extracellular matrix and vesicles in valvular disease
MOSAIC scholar Cassandra Clift uses mass spectrometry and multiomics to study cardiovascular calcification and collagen dysregulation, bridging her background in bioengineering and biology to investigate extracellular vesicles and heart disease.

Lipid profiles reveal sex differences in type 2 diabetes
Researchers explored the lipid profiles of individuals with type 2 diabetes and identified potentially useful lipid biomarkers for this condition.

Serum lipids may predict early diabetes risk
Researchers found that levels of two key fatty acids may predict worsening tolerance for glucose, independent of body fat and insulin levels. In turn, these fatty acids may serve as early T2D biomarkers.