News

Stem cell–derived model offers insights on gene activity and addiction

Matt Shipman
May 13, 2022

Researchers at North Carolina State University have demonstrated that neuron-like cells derived from human stem cells can serve as a model for studying changes in the nervous system associated with addiction. The work sheds light on the effect of dopamine on gene activity in neurons, and offers a blueprint for related research moving forward.

“It is extremely difficult to study how addiction changes the brain at a cellular level in humans — nobody wants to experiment on somebody’s brain,” says Albert Keung, corresponding author of the study and an assistant professor of chemical and biomolecular engineering at NC State. “What we’ve done here demonstrates that we can gain a deep understanding of those cellular responses using neuronlike cells derived from human stem cells.”

At issue is how cells in our nervous system respond to drugs that are associated with substance abuse and addiction. Our bodies produce a neurotransmitter called dopamine. It’s associated with feelings, such as pleasure, that are related to motivation and reward. When neuronal cells in the brain’s “reward pathway” are exposed to dopamine, the cells activate a specific suite of genes, triggering the feelings of reward that can make people feel good. Many drugs — from alcohol and nicotine to opioids and cocaine — cause the body to produce higher levels of dopamine.

“In experiments using rodents, researchers have shown that when relevant neuronal cells are exposed to high levels of dopamine for an extended period of time, they become desensitized — meaning the cells’ gene activation is less pronounced in response to the dopamine,” Keung says. “This is called gene desensitization. However, until now, it hasn’t been possible to do an experimental study using human neuronal cells.”

“Our work here is the first experimental study to demonstrate gene desensitization in human neuronal cells, specifically in response to dopamine,” says Ryan Tam, first author of the study and a Ph.D. student at NC State. “We don’t have to infer that it is happening in human cells; we can show that it is happening in human cells.”

In their study, Tam and Keung exposed neuronlike cells derived from human stem cells to varying levels of dopamine for varying periods of time. The researchers found that when cells were exposed to high levels of dopamine for an extended period of time, the relevant “reward” genes became significantly less responsive. The work was published in the journal Cells.

Stem cell-derived medium spiny-like neuron morphology highlighted by the green fluorescent protein GFP and neuron marker MAP2 in red.
Courtesy of Ryan Tam
Stem cell–derived medium spinylike neuron morphology highlighted by the green fluorescent protein GFP and neuron marker MAP2 in red.

“This is an interesting finding, but it’s also a proof of concept study,” Tam says. “We’ve demonstrated that gene desensitization to dopamine occurs in human cells, but there is still a lot we don’t know about the nature of the relationship between dopamine and gene desensitization.

“For example, could higher levels of dopamine cause desensitization at shorter time scales? Or could lower levels of dopamine cause desensitization at longer time scales? Are there threshold levels, or is there some sort of linear relationship? How might the presence of other neurotransmitters or bioactive chemicals affect these responses?”

“Those are good questions, which future research could address,” says Keung. “And we’ve demonstrated that these neuronlike cells derived from human stem cells are a good model for conducting that research.”

This article was republished with permission from North Carolina State University. Read the original.

Enjoy reading ASBMB Today?

Become a member to receive the print edition monthly and the digital edition weekly.

Learn more
Matt Shipman

Matt Shipman is the research communications lead at North Carolina State University. He is also a freelance writer and communications consultant, a contributor to Health News Review, author of the “Handbook for Science Public Information Officers” (University of Chicago Press, 2015), and contributor to “Science Blogging: The Essential Guide” (Yale University Press, 2016).

Get the latest from ASBMB Today

Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.

Latest in Science

Science highlights or most popular articles

Here’s the latest good and bad news about COVID-19 drugs
News

Here’s the latest good and bad news about COVID-19 drugs

May 26, 2022

After vaccines, antivirals and a monoclonal antibody are the next line of defense.

Zinc is a metal essential to life
News

Zinc is a metal essential to life

May 25, 2022

Scientists have discovered a protein that helps keep cells alive when zinc levels are low.

The mechanism of the monkeypox antiviral
News

The mechanism of the monkeypox antiviral

May 24, 2022

As monkeypox becomes an international concern, interest grows in tecovirimat; this smallpox drug targets a structural protein that helps wrap the virus in a second lipid bilayer.

Researchers investigate self-regulation of an enzyme with critical cellular functions
News

Researchers investigate self-regulation of an enzyme with critical cellular functions

May 24, 2022

They found that one mechanism of CK1 activity, and thus one mechanism of regulation, is the self-phosphorylation of a conserved amino acid residue in its catalytic domain.

What is monkeypox?
Science Communication

What is monkeypox?

May 23, 2022

A microbiologist explains what’s known about this smallpox cousin.

A simple method to determine phase preference of proteins on live cell membranes
Journal News

A simple method to determine phase preference of proteins on live cell membranes

May 22, 2022

“The phase preference of molecules used to be difficult and time-consuming to establish. This new method, detected by chance, provides results in at most 15 minutes on live cells,” Thorsten Wohland said.