News

Astrocyte cells in the fruit fly brain are an on-off switch

Sarah DeGenova Ackerman
By Sarah DeGenova Ackerman
May 9, 2021

Neuroplasticity — the ability of neurons to change their structure and function in response to experiences — can be turned off and on by the cells that surround neurons in the brain, according to a new study on fruit flies that I co-authored.

Astrocyte-cells-445x219.jpg
Sarah DeGenova Ackerman, CC BY-ND
The colors in this microscope photo of a fruit fly brain show different types of neurons
and the cells that surround them in the brain.

As fruit fly larvae age, their neurons shift from a highly adaptable state to a stable state and lose their ability to change. During this process, support cells in the brain – called astrocytes — envelop the parts of the neurons that send and receive electrical information. When my team removed the astrocytes, the neurons in the fruit fly larvae remained plastic longer, hinting that somehow astrocytes suppress a neuron's ability to change. We then discovered two specific proteins that regulate neuroplasticity.

Why it matters

The human brain is made up of billions of neurons that form complex connections with one another. Flexibility at these connections is a major driver of learning and memory, but things can go wrong if it isn't tightly regulated. For example, in people, too much plasticity at the wrong time is linked to brain disorders such as epilepsy and Alzheimer's disease. Additionally, reduced levels of the two neuroplasticity-controlling proteins we identified are linked to increased susceptibility to autism and schizophrenia.

Similarly, in our fruit flies, removing the cellular brakes on plasticity permanently impaired their crawling behavior. While fruit flies are of course different from humans, their brains work in very similar ways to the human brain and can offer valuable insight.

Fruit-flies-754x488.jpg
Sarah DeGenova Ackerman, CC BY-ND
As fruit flies develop, special cells surround their neurons and seem to halt neuroplasticity.

One obvious benefit of discovering the effect of these proteins is the potential to treat some neurological diseases. But since a neuron's flexibility is closely tied to learning and memory, in theory, researchers might be able to boost plasticity in a controlled way to enhance cognition in adults. This could, for example, allow people to more easily learn a new language or musical instrument.

How we did the work

My colleagues and I focused our experiments on a specific type of neurons called motor neurons. These control movements like crawling and flying in fruit flies. To figure out how astrocytes controlled neuroplasticity, we used genetic tools to turn off specific proteins in the astrocytes one by one and then measured the effect on motor neuron structure. We found that astrocytes and motor neurons communicate with one another using a specific pair of proteins called neuroligins and neurexins. These proteins essentially function as an off button for motor neuron plasticity.

What still isn't known

My team discovered that two proteins can control neuroplasticity, but we don't know how these cues from astrocytes cause neurons to lose their ability to change.

Additionally, researchers still know very little about why neuroplasticity is so strong in younger animals and relatively weak in adulthood. In our study, we showed that prolonging plasticity beyond development can sometimes be harmful to behavior, but we don't yet know why that is, either.

Fruit-flies-brain-445x254.jpg
Sarah DeGenova Ackerman CC BY-ND
This is a caption.In this image showing a developing fruit fly brain on the right
and the attached nerve cord on the left, the astrocytes are labeled in different
colors showing their wide distribution among neurons.

What's next

I want to explore why longer periods of neuroplasticity can be harmful. Fruit flies are great study organisms for this research because it is very easy to modify the neural connections in their brains. In my team's next project, we hope to determine how changes in neuroplasticity during development can lead to long–term changes in behavior.

There is so much more work to be done, but our research is a first step toward treatments that use astrocytes to influence how neurons change in the mature brain. If researchers can understand the basic mechanisms that control neuroplasticity, they will be one step closer to developing therapies to treat a variety of neurological disorders.

This article is republished from The Conversation under a Creative Commons license. Read the original article.

The Conversation

Sarah DeGenova Ackerman
Sarah DeGenova Ackerman

Sarah DeGenova Ackerman is a postdoctoral fellow at the University of Oregon Institute of Neuroscience and Howard Hughes Medical Institute.

Join the ASBMB Today mailing list

Sign up to get updates on articles, interviews and events.

Latest in Science

Science highlights or most popular articles

A molecular determinant of membrane protein targeting
Lipid News

A molecular determinant of membrane protein targeting

Sept. 22, 2021

A study found that a nuclear envelope-localized protein depends on cardiolipin for translocation to its target membrane.

Nautilus founder unspirals a new approach to proteomics
Feature

Nautilus founder unspirals a new approach to proteomics

Sept. 21, 2021

Parag Mallick may be trying to launch a competing proteomics technique, but you won’t catch him badmouthing mass spectrometers.

From pigeon guano to the brain
Health Observance

From pigeon guano to the brain

Sept. 20, 2021

Exploring the journey of the deadly fungal pathogen Cryptococcus neoformans (and its less widespread but still quite serious cousin C. gattii).

Deadly fungal infections
Science Communication

Deadly fungal infections

Sept. 19, 2021

For hospitalized COVID-19 patients, antimicrobial-resistant infections may be a particularly devastating risk of hospitalization.

Scientists must speak out against 'immune-boosting' supplements
Science Communication

Scientists must speak out against 'immune-boosting' supplements

Sept. 18, 2021

Supplements that claim to supercharge your T-cells, make your antibodies hum and otherwise make you invincible are all bunk, and scientists should speak out more about this misinformation.

Finding the right research path
Interview

Finding the right research path

Sept. 16, 2021

Karen Bornfeldt, an associate editor for the Journal of Lipid Research, investigates how diabetes increases cardiovascular disease risk.