Journal News

The pitfalls of relying on computers

Chloe Kirk
May 2, 2023

Glycosylation is a frequent post-translational modification, and the resulting glycoproteins — proteins decorated with carbohydrates — are involved in many functions that influence proteins’ physical and immunological properties. This means researchers need software that correctly characterizes glycosylation and identifies the types of glycoproteins involved.

Two important types of glycoproteins are O-linked and N-linked, so called because sugars are attached to the protein through an oxygen atom (O) or nitrogen atom (N) of the residues they bind to. Researchers have limited knowledge about protein glycosylation, especially O-glycosylation. According to Zsuzsanna Darula, head of the Single Cell Omics Advanced Core Facility at the Hungarian Center of Excellence for Molecular Medicine, or HCEMM, that’s due to a number of factors: “their impressive heterogeneity, the inability to predict which residues may be modified, the identified modification sites are not always occupied, and several, rather different glycans may modify the same residue.”

Mass spectrometry, a valuable tool for discovering protein modifications, works by measuring the mass of an intact molecule and then fragmenting the molecule and measuring its pieces to decipher its chemical structure. Using the latest mass spectrometers with improved mass accuracy and detection sensitivity, Adam Pap and collaborators at the Biological Research Centre and HCEMM analyzed the largest intact human O-glycopeptide data set to date from human urine samples.

In the lab’s initial analysis, Pap noticed that the urinary O-glycosylation landscape was more complicated than expected. The team ran the data through four automated interpretation search engines and also characterized it manually. They noticed large discrepancies among the search engine data interpretations, which they published recently in the journal Molecular & Cellular Proteomics.

The team originally had hoped to identify O-glycosylation differences between healthy individuals and cancer patients and, thus, potential biomarkers of bladder cancer. Instead, “We discovered in the process that our tools are not good enough yet for that purpose,” Darula and Pap wrote in an email, “and we focused on the shortcomings and necessary improvements of data interpretation software.”

More than half of the O-glycopeptides were picked up by only one of the four search engines, and some N-glycopeptides even qualified as O-glycosylation candidates, according to certain software. Only about 20% of the identifications were supported by three or four of the programs.

Glycopeptides are tricky to characterize. A researcher must determine both the sequence of the peptide and the number and composition of the individual modifying glycans, as well as their attachment sites. The authors recommend applying two fragmentation methods during the analysis: higher-energy collision-induced dissociation, or HCD, and electron-transfer dissociation and HCD in combination. The resulting spectra must be used in concert for the data interpretation.

According to Darula and Pap, the team’s secret weapon was inspecting the data themselves, and in doing so they reported about 35 novel structures.

“Our study should be a warning for both the scientific community and the general public that we all want an easy and quick answer to most of our questions and for this reason, we throw our critical thinking aside and trust the computers too much,” they wrote.

Darula and her team urge closer collaboration between software developers and mass spectrometry groups to improve the code accuracy in glycopeptide assignments.

Enjoy reading ASBMB Today?

Become a member to receive the print edition monthly and the digital edition weekly.

Learn more
Chloe Kirk

Chloe Kirk is working toward her Ph.D. in biochemistry and molecular biology at the University of Miami. Her interests are science research, communication and outreach.

Get the latest from ASBMB Today

Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.

Latest in Science

Science highlights or most popular articles

The quest to treat and cure xerostomia
Interview

The quest to treat and cure xerostomia

July 23, 2024

Blake Warner, chief of the Salivary Disorders Unit at the NIH talks about his lab’s efforts to develop treatments for dry mouth.

There's more to blue cheese than just the stench
News

There's more to blue cheese than just the stench

July 21, 2024

Virginia Tech researchers discovered a way to synthesize a compound in the mold of blue cheese that has antibacterial and anticancer properties.

Engineering cells to broadcast their behavior can help scientists study their inner workings
News

Engineering cells to broadcast their behavior can help scientists study their inner workings

July 20, 2024

Researchers can use waves to transmit signals from the invisible processes and dynamics underlying how cells make decisions.

From the journals: JBC
Journal News

From the journals: JBC

July 19, 2024

Lung cancer cells resist ferroptosis. ORMDL3 in ulcerative colitis. Novel genetic variants in thyroid cancer. Read about these recent papers.

Seeking the sweet spot to beat a pig parasite
Journal News

Seeking the sweet spot to beat a pig parasite

July 16, 2024

Researchers extracted, separated and tested glycans from the porcine whipworm in an effort to determine the best way to develop treatments and vaccines.

Radioactive drugs strike cancer with precision
News

Radioactive drugs strike cancer with precision

July 14, 2024

The tumor-seeking radiopharmaceuticals are charting a new course in oncology, with promise for targeted treatments with fewer side effects.