Journal News

MCP: A royal legacy

Researchers delve into sugar modifications to proteins in a food for honeybee larvae
Laurel Oldach
December 01, 2018

Katharina Paschinger’s father, a conservation chemist in Vienna, was a devoted beekeeper. Paschinger remembers fondly that he would bring royal jelly, an important food for bee larvae, as a gift on visits to her maternal grandmother.

“He would feed it to my grandma and tell her it was for long life and beauty,” Paschinger said. “And actually, she lived to be 98.”

Two queen cells These two queen cells were opened to show queen larvae of the Western honey bee floating in royal jelly.WAUGSBERG/WIKIMEDIA COMMONS

Royal jelly is widely believed to have health benefits, although the medical evidence is scarce (and doctors caution that some people have severe allergic reactions). One thing the substance certainly does is promote caste development in honeybees, causing genetically identical larvae to develop into very different adults. All bee larvae eat royal jelly secreted by worker bees for the first few days of life, but those selected to be queens continue to eat it until they pupate and beyond, whereas those that will become workers switch to honey and pollen. Biologists believe molecular signals in royal jelly drive larval bees to develop into queens, but the details of that signaling — including what molecule is most important and how it is recognized — are not yet clear.

Such questions brought Katharina Paschinger, a chemist, to revisit royal jelly this year in research published in the journal Molecular & Cellular Proteomics. Paschinger and colleagues in Iain Wilson’s lab at the University of Natural Resources and Life Sciences in Vienna focus on glycoproteins, proteins to which a chain of sugar molecules is attached. These sugar chains, called glycans, can affect proteins’ binding and signaling activities dramatically.

Previous studies of royal jelly glycoproteins mostly had found classes of glycans known as oligomannosidic and simple hybrids. As these contain no special recognition elements, they could not explain the unique effect of royal jelly on larval fate. But Paschinger, her colleagues and other scientists recently began to find more complex glycan structures in several insect species, such as mosquitoes and moths. Their data, Paschinger said, challenged “a really long-held belief that insects only synthesize oligomannosidic glycans. You see these statements everywhere. It’s a nightmare to read such simplifications.”

The diversity in other insects’ glycans was a reason to suspect that royal jelly glycoproteins also had hidden depth. Royal jelly, available in bulk at health food stores, was a good candidate for a combined glycomic and glycoproteomic analysis, first author Alba Hykollari said.

“If you have a sample and you want to start with glycomics, the first question is how much you have and how pure is it,” Hykollari said. “We were quite lucky; we got a lot of royal jelly, and it was very pure.”

To determine the structure of the glycans in royal jelly, Hykollari used enzymes to isolate the glycans from proteins and added chemical tags. She separated the tagged glycans using liquid chromatography and analyzed them using a mass spectrometer.

Paschinger analyzed the data to draw conclusions about the glycan structures. First, she compared fragmentation patterns to precursor molecules, making inferences about the glycans’ structures from how they broke apart. Then she suggested specific chemical or enzymatic treatments to test those hypotheses.

Because glycans are modular chains, like Legos, breaking off one unit at a time can give a good idea of how the whole fits together. For example, phosphoethanolamine, a subunit the team observed in royal jelly, blocks digestion by some enzymes, but it can be removed using hydrofluoric acid. If glycan fragments of a certain mass appeared after treatment with hydrofluoric acid, it was a clue that phosphoethanolamine was present.

“I would say that the N-glycome of royal jelly was definitely underestimated,” Hykollari said.

Of the approximately 100 glycan structures the team defined, many had not been observed before in bees. Their laboratory’s exclusive focus on glycan biochemistry and their extremely sensitive mass spectrometer helped the researchers determine the identity of scarce glycans, Hykollari said. “We have worked (on glycans) for many years, so I would say our workflow is optimized.”

Knowing these structures could help future scientists understand the activity of glycosylated proteins in royal jelly — either how they designate larval bees as future queens or how they trip allergic alarms in the human immune system. For example, said Paschinger, a researcher could synthesize a glycan from royal jelly to see how it interacts with signaling proteins in the larva. Their own plans moving forward are to tackle the glycome of another species.

“Our driving force is understanding glycoevolution,” Paschinger said. “But very often we’re also driven by the element of challenge.”

Paschinger said the research team dedicated their manuscript to her father, the chemist-beekeeper. “I am sure he would have been very happy to see something scientific come out of his beekeeping hobby.”

Laurel Oldach

Laurel Oldach is a science writer for the ASBMB.

Join the ASBMB Today mailing list

Sign up to get updates on articles, interviews and events.

Latest in Science

Science highlights or most popular articles

In the future, lab mice will live in computer chips, not cages
Life in the Lab

In the future, lab mice will live in computer chips, not cages

July 11, 2020

As COVID-19 shuttered laboratories across the U.S., many researchers were forced to euthanize the animals they study. Lindsay Gray, a rodent surgeon in an animal research lab that faced this dilemma, argues here there is a safer, more effective way.

Proteomics reveals hallmarks of aging in brain stem cells
Journal News

Proteomics reveals hallmarks of aging in brain stem cells

July 09, 2020

Early in adulthood, the brain regenerates lost myelin effectively, but remyelination falters with age. Researchers seek to understand why — and what the change may mean for people with multiple sclerosis.

Ocean virus hijacks carbon-storing bacteria
Journal News

Ocean virus hijacks carbon-storing bacteria

July 07, 2020

A Journal of Biological Chemistry paper reports that these minuscule interactions could have ripple effects on global carbon dioxide levels.

CRISPR nanoparticles are the next big hope in Alzheimer’s disease treatments
News

CRISPR nanoparticles are the next big hope in Alzheimer’s disease treatments

July 04, 2020

Nearly 6 million Americans live with Alzheimer’s disease without solid treatment options.

Summer food science
Stroopwafels

Summer food science

July 02, 2020

For those of you bound for a summertime holiday weekend, we dug into recent research on the yummy foods you might serve at a socially distant picnic.

How lipid droplets stay in shape
Journal News

How lipid droplets stay in shape

June 30, 2020

Andrew Greenberg and colleagues discovered that the protein perilipin is involved in storage and hydrolysis of neutral lipids within these key structures in cells.