Journal News

Sweet secrets of sperm glycosylation

Aswathy Rai
March 12, 2025

Sperm cells are highly specialized, with a head and tail designed for finding and fusing with an egg. The head contains the nucleus and the acrosome, a structure that helps sperm interact with the egg; while the tail provides movement, powered by mitochondria.  Scientists have studied the proteins in sperm cells but know less about how these proteins are modified, especially via glycosylation, or the addition of sugars. Scientists from The Netherlands recently showed that sperm protein glycosylation plays a key role in survival and fertilization.

Karli Reiding at Utrecht University, leads a team that researches and develops methodologies for in-depth glycoproteomics, a detailed study of proteins that have sugar molecules, or glycans, attached to them. The group analyzes glycans and maps their precise attachment sites on proteins using glycoproteomics.

Reiding said posttranslational modifications are to proteins what clothing is to humans. These embellishments are essential for function, protection and adaptation to their environment.

“We interact with the world using our hands and senses,” Reiding said, “but we also adorn ourselves with clothing for various purposes, whether to stay warm, protect against rain or improve vision, as many of us do with glasses.”

In a recent study published in the journal Molecular & Cellular Proteomics, graduate student Rensong Ji and colleagues analyzed sperm N-glycosylation patterns, a type of glycosylation where glycans are attached to a protein at a specific site on the amino acid asparagine. The team compared the sugar patterns found in mature, ejaculated sperm cells from humans, bulls and boars to those in human plasma using liquid chromatography with tandem mass spectrometry.

The researchers found that sperm have unique sugar coatings, different from those in human plasma and that distinct parts of the sperm house unique sugar patterns. These sugar identities and patterns are similar across species, suggesting they are crucial for sperm function and fertility.

“If a protein is decorated in a specific way, we do not know if it is important or just arbitrary,” Ji said. “But if we see the same pattern across closely related species, it suggests evolutionary pressure to maintain it. Finding these unexpected, conserved glycosylation patterns across species indicates there’s likely something important underlying it.”

The researchers showed that sperm cells from humans, bulls and boars share a highly similar set of proteins, with 87 of them carrying specific sugar modifications, N-glycans. These sugar patterns were consistent across species suggesting that this similarity may be important for sperm survival, movement through the female reproductive system and fertilization.

The study also found that different types of sugar molecules localize to specific parts of sperm cells. For example, paucimannoses sugars localize to the acrosomal vesicle, a part of the sperm involved in fertilization, whereas oligomannose sugars are concentrated in the sperm's head membrane. This suggests these glycans play unique roles in sperm function.

“By understanding the role of glycans in sperm, we might improve fertilization (methods), such as IVF treatments, and find new ways to intervene,” Ji said.  

Reiding added: “(U)nderstanding fertilization better could help us select the most fertile bulls or boars for farming.” 

Enjoy reading ASBMB Today?

Become a member to receive the print edition four times a year and the digital edition monthly.

Learn more
Aswathy Rai

Aswathy N. Rai is an assistant teaching professor and undergraduate coordinator at Mississippi State University's department of biochemistry, molecular biology, entomology and plant pathology. She is an ASBMB Today volunteer contributor.

Get the latest from ASBMB Today

Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.

Latest in Science

Science highlights or most popular articles

Understanding the roles of extracellular matrix and vesicles in valvular disease
Profile

Understanding the roles of extracellular matrix and vesicles in valvular disease

Oct. 30, 2025

MOSAIC scholar Cassandra Clift uses mass spectrometry and multiomics to study cardiovascular calcification and collagen dysregulation, bridging her background in bioengineering and biology to investigate extracellular vesicles and heart disease.

Lipid profiles reveal sex differences in type 2 diabetes
Journal News

Lipid profiles reveal sex differences in type 2 diabetes

Oct. 29, 2025

Researchers explored the lipid profiles of individuals with type 2 diabetes and identified potentially useful lipid biomarkers for this condition.

Serum lipids may predict early diabetes risk
Journal News

Serum lipids may predict early diabetes risk

Oct. 29, 2025

Researchers found that levels of two key fatty acids may predict worsening tolerance for glucose, independent of body fat and insulin levels. In turn, these fatty acids may serve as early T2D biomarkers.

Sex and diet shape fat tissue lipid profiles in obesity
Journal News

Sex and diet shape fat tissue lipid profiles in obesity

Oct. 29, 2025

Researchers found that sex hormone levels and diet both influence inflammation and lipid composition in obesity.

Mapping the placenta’s hormone network
Journal News

Mapping the placenta’s hormone network

Oct. 21, 2025

Study uncovers how the placenta actively metabolizes not only glucocorticoids but also novel androgens and progesterones, reshaping our understanding of pregnancy and its complications.

Biochemists and molecular biologists sweep major 2025 honors
News

Biochemists and molecular biologists sweep major 2025 honors

Oct. 20, 2025

Recent Nobel, MacArthur and Kimberly Prize honorees highlight the power of biochemistry and molecular biology to drive discovery, including immune tolerance, vaccine design and metabolic disease, and to advance medicine and improve human health.