Journal News

Small protein plays a big role in viral battles

Anna Crysler
April 30, 2024

Extracellular vesicles, or EVs, play an important role in communication among cells. Almost all cells can release EVs, which carry content that varies according to the cell type. In response to viruses, immune cells will release EVs containing information that can help the body fight viral replication and infection. But what happens when a complex pathogen hijacks this system?

HIV accessory protein negative regulatory factor
Boghog/Wikimedia Commons
The HIV accessory protein negative regulatory factor, illustrated here, allows easier viral replication and spread in host cells.

Luis daSilva’s research group at the University of São Paulo in Ribeirão Preto studies the endomembrane system of cells with particular interest in the molecular mechanisms of human immunodeficiency virus, or HIV. Viruses can take advantage of this system and impair the immune system’s ability to prevent infection. Researchers have thoroughly studied and characterized HIV’s specific proteins, and they recognize HIV accessory proteins as important virulence factors for HIV-1 pathogenesis.

In a recent paper in Molecular and Cellular Proteomics, the daSilva group writes about their work studying the HIV accessory protein negative regulatory factor, or Nef, in the context of EVs. Nef allows easier viral replication and spread in host cells, and it also modifies the host’s EVs. The authors investigated the impact of this manipulation by Nef through a proteomic analysis of EVs derived from lymphocytes known as T cells.

Mara Elisama da Silva Januário is the first author of the paper. “Our study unveils the influence of Nef on the protein content of EVs released from T lymphocytes, cells that play a major role in the body’s defense,” she said. “Our recent findings highlight Nef as a global modulator of EV proteome.”

Specifically, Nef downregulates proteins in EVs that are important in the body’s antiviral response to HIV-1, including interferon-induced transmembrane proteins, or IFITMs. When IFITMs are reduced in EVs, key antiviral activities are mitigated. These proteins are among several whose expression is disrupted by Nef in HIV-1 infection. 

The researchers found that Nef could modify the levels of more than 35% of the proteins identified in EVs, and among the decreased proteins were three members of the IFITM family. These proteins are pivotal in the body’s antiviral response against viruses including Zika, dengue, influenza and HIV. 

“By decoding these intricate cellular dialogues, our work contributes a small but significant piece to the broader narrative of scientific discovery surrounding HIV-1 infection, offering potential avenues for advancements in medical interventions,” da Silva Januário said.

Unraveling the biological significance of altered proteins in EVs in relation to viral infection and replication are important next steps, she said. “We anticipate that further exploration in this direction will provide valuable insights for the field, shedding light on the intricate processes influenced by Nef and contributing to a deeper understanding of the broader implications for viral dynamics.”

Enjoy reading ASBMB Today?

Become a member to receive the print edition four times a year and the digital edition monthly.

Learn more
Anna Crysler

Anna Crysler holds a B.A. in biochemistry from Albion College and is a is a Ph.D. student in bioengineering at the University of Pennsylvania. She is an ASBMB Today volunteer contributor.

Related articles

From the journals: MCP
Meric Ozturk
From the journals: MCP
Vanshika Patel
From the journals: MCP
Krishnakoli Adhikary
From the Journals: JBC
Ken Farabaugh

Get the latest from ASBMB Today

Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.

Latest in Science

Science highlights or most popular articles

Computational tool helps scientists create novel bug sprays
Journal News

Computational tool helps scientists create novel bug sprays

May 20, 2025

Rapid discovery of mosquito repellent compounds is enabled through a novel screening platform that combines both computational modeling and functional screening.

Meet Lan Huang
Interview

Meet Lan Huang

May 19, 2025

Molecular & Cellular Proteomics associate editor uses crosslinking mass spec to study protein–protein interactions to find novel therapeutics.

Influenza gets help from gum disease bacteria
Journal News

Influenza gets help from gum disease bacteria

May 15, 2025

Scientists discover that a protease from Porphyromonas gingivalis enhances viral spread. Read more about this recent Journal of Biological Chemistry paper.

How bacteria fight back against promising antimicrobial peptide
Journal News

How bacteria fight back against promising antimicrobial peptide

May 15, 2025

Researchers find a mutation in E. coli that reduces its susceptibility to a potential novel antibiotic. Read more about this recent Journal of Biological Chemistry paper.

New clues reveal how cells respond to stress
Journal News

New clues reveal how cells respond to stress

May 15, 2025

Redox signaling protein may help regulate inflammasome and innate immune activation. Read more about this recent Journal of Biological Chemistry paper.

Innovative platform empowers scientists to transform venoms into therapeutics
Journal News

Innovative platform empowers scientists to transform venoms into therapeutics

May 13, 2025

Scientists combine phage display and a “metavenome” library to discover new drugs that bind clinically relevant human cell receptors. Read about this recent Molecular & Cellular Proteomics paper.