Journal News

Cow born in Japan after removal, replacement of placental cells

John Arnst
April 24, 2020

Researchers at Hokkaido University have found that cow embryos from which placenta-forming cells had been removed can regrow those cells, form a placenta and successfully gestate. The scientists recently published their results, which provide insight into the regenerative capacity of mammalian embryos, in the Journal of Biological Chemistry.

All mammalian embryos follow the same blueprint in the first week of development: After being fertilized, a zygote divides into two cells, which quickly become four, eight, then 16 cells that specialize into an inner cell mass and outer cells that are known individually as trophoblasts and collectively as the trophectoderm.

Nanami Kohri, the lead author on the paper, was intrigued by the fact that mouse embryos in which the trophoblasts — which differentiate to form the placenta — had been removed were much less successful in regenerating a placenta than bovine embryos that also had trophoblasts removed.

“Although isolated inner cell masses in both mice and cattle underwent trophectoderm regeneration, they were significantly different in terms of regeneration efficiency, marker protein distribution and expression status of key genes,” he said. “Surprisingly, a calf was successfully delivered after the transfer of the reformed inner cell mass to the surrogate mother, but no descendants were obtained from reformed inner cell masses in mice.”

Bovine-890x594.jpg
Courtesy of Nanami Kohri/ Hokkaido University
Scientists in Japan removed placenta-forming cells from a bovine embryo, but it was able to regrow those cells, form a placenta and successfully gestate. It is now this healthy 23-month-old cow. The researchers named the cow Matoryona because as an embryo it resembled a Russian matryoshka nesting doll.

Kohri and his colleagues at the Laboratory of Animal Breeding and Reproduction previously had isolated bovine inner cell masses from embryos at the early blastocyst stage to find where the genes that give rise to the trophectoderm were being expressed. Other groups had shown that cells positioned at the outer margin of the inner cell mass could be transformed into trophectoderm in mouse embryos.

To understand why the bovine embryos had more success regenerating placental cells than the murine embryos, the researchers at Hokkaido University investigated the expression of the gene SOX17, which creates a protein that regulates cell specialization in development. They found that the expression of SOX17 varied significantly between the two species and was localized to the trophectoderm cells that had been originally absent in murine embryos, which might explain the weaker regenerative capacity.

Kohri and colleagues plan to investigate what drives the differences in embryonic protein expression among mammals as they continue to monitor their calf, which is now 23 months old and healthy.

“It has been suggested that the molecular basis of determining cellular divisions and localization in development differs among species,” Kohri said. “In the future, we will have to use our experimental system to evaluate trophectoderm regeneration from the reformed inner cell masses in mice and cattle.”

Enjoy reading ASBMB Today?

Become a member to receive the print edition monthly and the digital edition weekly.

Learn more
John Arnst

John Arnst was a science writer for ASBMB Today.

Get the latest from ASBMB Today

Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.

Latest in Science

Science highlights or most popular articles

A membrane ATPase without transporter activity
Journal News

A membrane ATPase without transporter activity

Sept. 28, 2022

A classic article in the Journal of Biological Chemistry reflects on Guido Guidotti’s laboratory and the search for CD39.

The era of “smart” organelles
Annual Meeting

The era of “smart” organelles

Sept. 28, 2022

This symposium, Organelles, Mechanisms and Phase Properties of Cellular Quality Control, will be part of #DiscoverBMB 2023.

Lipids, lipids everywhere!
Annual Meeting

Lipids, lipids everywhere!

Sept. 27, 2022

This symposium, Lipid Dynamics and Signals in Membrane and Protein Structure, will be part of #DiscoverBMB 2023.

A target to prevent kidney injury by chemotherapy
Journal News

A target to prevent kidney injury by chemotherapy

Sept. 27, 2022

“Many people don’t realize that the side effects of chemotherapy are not limited to hair loss, diarrhea and nausea.”

Carbohydrates for life,  health and diseases
Annual Meeting

Carbohydrates for life, health and diseases

Sept. 27, 2022

This symposium, Frontiers in Carbohydrate Synthesis and Recognition, will be part of #DiscoverBMB 2023.

Learn, reflect and lead
Annual Meeting

Learn, reflect and lead

Sept. 26, 2022

This symposium, Educational Professional Development, will be part of #DiscoverBMB 2023 in March.