A mold’s dangerous responses to its environment
Aflatoxins are among the most dangerous of natural products. At a high dose, the toxins can cause fatal liver failure; at lower doses, by forming adducts with guanine bases in DNA, they can cause mutations that lead to liver cancer.

The toxins are made by filamentous fungi in the Aspergillus family found in soil and are able to colonize the grains and seeds that constitute many of the world's most important food crops. Aspergilli don't need aflatoxins to survive; they activate aflatoxin synthesis in response to environmental conditions, especially heat and moisture. Since hotter days are coming worldwide, researchers would like to find strategies to reduce aflatoxin production.
The genome of Aspergillus flavus, the chief culprit in introducing aflatoxin to human and animal food supplies, first was sequenced in 2006. But there's a difference between knowing what sequences are in a genome and knowing what they do; many sections of the A. flavus genome have not been annotated, meaning that researchers have had little insight into their function.
In a recent article in the journal Molecular & Cellular Proteomics, researchers at the Fujian Agriculture and Forestry University in China, led by Mingkun Yang, report on a proteogenomic analysis of A. flavus. By using the whole fungal genome instead of only its known coding sequences as the reference database to identify peptides detected through mass spectrometry, the team discovered over 700 new protein-coding genes.
"The authors provide a significant improvement to the genome annotation in Aspergillus and demonstrate the use of proteogenomics as a tool especially in organisms lacking high-quality genome annotations," one anonymous peer reviewer wrote.
Researchers cultured the fungus under cold, salty and oxidative stress conditions to maximize phenotypic variability, and they were rewarded: The fungi expressed a smorgasbord of proteoforms, including over 200 new-to-science splice variants, some single-amino-acid variants and a few unexpected intergenic peptides. In follow-up quantitative PCR experiments, the researchers observed that stressful conditions substantially affected the expression of some of the new genes.
Based on homology to other, better-annotated proteins in the literature, the authors think that they may have identified new metabolic enzymes, signaling proteins and stress response factors. They have not yet determined whether any of the new genes are involved in aflatoxin production.
According to the researchers, follow-up studies of the new protein-coding genes and when and where they are expressed may improve our understanding of when and why aflatoxin is produced.
Enjoy reading ASBMB Today?
Become a member to receive the print edition four times a year and the digital edition monthly.
Learn moreGet the latest from ASBMB Today
Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.
Latest in Science
Science highlights or most popular articles

Computational tool helps scientists create novel bug sprays
Rapid discovery of mosquito repellent compounds is enabled through a novel screening platform that combines both computational modeling and functional screening.

Meet Lan Huang
Molecular & Cellular Proteomics associate editor uses crosslinking mass spec to study protein–protein interactions to find novel therapeutics.

Influenza gets help from gum disease bacteria
Scientists discover that a protease from Porphyromonas gingivalis enhances viral spread. Read more about this recent Journal of Biological Chemistry paper.

How bacteria fight back against promising antimicrobial peptide
Researchers find a mutation in E. coli that reduces its susceptibility to a potential novel antibiotic. Read more about this recent Journal of Biological Chemistry paper.

New clues reveal how cells respond to stress
Redox signaling protein may help regulate inflammasome and innate immune activation. Read more about this recent Journal of Biological Chemistry paper.

Innovative platform empowers scientists to transform venoms into therapeutics
Scientists combine phage display and a “metavenome” library to discover new drugs that bind clinically relevant human cell receptors. Read about this recent Molecular & Cellular Proteomics paper.