Bubbly biochemistry: Understanding the components of sparkling wine
Whether or not your holiday celebrations involve imbibing, the cultural link between champagne flutes and festivities is strong. The fizz and pop of sparkling wine give breaking out the bubbly a special pizzazz.
In the first glycoproteomics study of its kind, a research team reports in the journal Molecular & Cellular Proteomics that glycoproteins are an important part of keeping those bubbles in solution. Cassandra Pegg and colleagues at the University of Queensland put a variety of sparkling wines under the microscope — or, more accurately, into the mass spectrometer — in hopes that the work would lead to better wine-making methods.
“Sparkling wine is really difficult to pipette,” Pegg, a postdoctoral researcher in Ben Schulz’s lab, said. “We have had some sets of samples that were gushing” — that’s a wine-biz term for when bubbles won’t stay in solution — “and the tubes would pop open in the lab.”
Gushing, when champagne or cava comes foaming out of an opened bottle, entertained Pegg and her colleagues. But it’s less than desirable commercially: Winemakers want the dissolved gas to come out of solution slowly, making a beverage that continues to bubble until it’s finished.
Sparkling wine’s carbonation results from two rounds of fermentation. After producing a base wine, winemakers mix in a solution of yeast and sugar and seal it all into a bottle to trap the carbon dioxide the yeast produce. The yeast strain, grape blend and tweaks to the production process can affect the quality of the final product — but the process is often a matter of trial and error.
To understand more about molecular attributes leading to positive prosecco properties, the researchers degassed samples of sparkling wine that had been aged for different periods or fermented with different strains of yeast. They used proteomic and glycoproteomic techniques to characterize the brews. Wine doesn’t have much protein, and most of the proteins they found were secreted by yeast or found in their cell walls. A surprisingly high proportion were glycosylated, or modified with complex sugar molecules.
As wines age, their proteins and glycopeptide constituents change. According to Ben Schulz, the professor who led the work, changes late in the aging process, when “no biology should be happening,” probably depend on the biophysics of protein solubility. Glycosylation can make a peptide more water-soluble and less likely to clump into sediment.
Similar principles may guide a wine’s propensity to gush. Researchers previously had found that a yeast cell wall protein called seripauperin 5 can stabilize foam; this and related proteins were among the most abundant that Schulz’s team identified.
“It’s not completely understood,” Schulz said of the protein’s foam-stabilizing effect. “But from a biophysical standpoint, it makes sense: Glycans tend to be hydrophilic, and peptides hydrophobic.” By clustering at the interfaces between liquid and gas, small glycopeptides could affect a wine’s surface tension and change the rate at which dissolved gas coalesces into bubbles and escapes.
By understanding the production methods that affect seripauperin 5 and other glycoproteins, Schulz said, he hopes to work in the future with winemakers looking to optimize their products.
Enjoy reading ASBMB Today?
Become a member to receive the print edition four times a year and the digital edition monthly.
Learn moreGet the latest from ASBMB Today
Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.
Latest in Science
Science highlights or most popular articles

Life in four dimensions: When biology outpaces the brain
Nobel laureate Eric Betzig will discuss his research on information transfer in biology from proteins to organisms at the 2026 ASBMB Annual Meeting.

Fasting, fat and the molecular switches that keep us alive
Nutritional biochemist and JLR AE Sander Kersten has spent decades uncovering how the body adapts to fasting. His discoveries on lipid metabolism and gene regulation reveal how our ancient survival mechanisms may hold keys to modern metabolic health.

Redefining excellence to drive equity and innovation
Donita Brady will receive the ASBMB Ruth Kirschstein Award for Maximizing Access in Science at the ASBMB Annual Meeting, March 7–10, just outside of Washington, D.C.

Mining microbes for rare earth solutions
Joseph Cotruvo, Jr., will receive the ASBMB Mildred Cohn Young Investigator Award at the ASBMB Annual Meeting, March 7–10, just outside of Washington, D.C.

Fueling healthier aging, connecting metabolism stress and time
Biochemist Melanie McReynolds investigates how metabolism and stress shape the aging process. Her research on NAD+, a molecule central to cellular energy, reveals how maintaining its balance could promote healthier, longer lives.

Mapping proteins, one side chain at a time
Roland Dunbrack Jr. will receive the ASBMB DeLano Award for Computational Biosciences at the ASBMB Annual Meeting, March 7–10, just outside of Washington, D.C.