Journal News

A tiny genetic tweak with big heart health implications

Nipuna Weerasinghe
Jan. 2, 2024

Heart disease remains a leading cause of death globally. A gene mutation found among members of the Amish community could pave the way for new treatments, a research team recently reported.

The scientists delved into plasma’s depths to understand how a specific mutation of a gene involved in posttranslational modification of proteins via covalently adding carbohydrates, a process known as glycosylation, can affect our plasma proteome, lipid levels and potentially heart health.

In a study recently published in the journal Molecular & Cellular Proteomics, Yunlong Zhao and a team of scientists from Regeneron Pharmaceuticals in New York and the University of Maryland focused on the B4GALT1 gene. This gene directs the synthesis of the enzyme beta-1,4-galactosyltransferase 1, or B4GALT1. This enzyme catalyzes the addition of ß-galactose sugar to core N-glycan structures during stepwise protein glycosylation in the Golgi apparatus.

Specifically, the researchers were interested in a naturally occurring mutation of B4GALT1 called N352S. This variant is exceedingly rare in the general population (fewer than one in 10,000 people have it), but it is found in about 12% of individuals in the Lancaster County, Pennsylvania, Amish community. The N352S mutation correlates with lower cardiovascular disease levels. The research team aims to understand how this variant alters B4GALT1 activity and how this affects levels of plasma glycoproteome and lipids, such as low-density lipoprotein cholesterol, which plays a role in atherosclerosis.

The team used plasma for a couple of reasons. “Plasma is an ideal starting point for our research. It can be directly drawn from individuals with this naturally occurring mutation and readily linked to other clinical indices,” Zhao said. “But it’s not just about convenience. Plasma contains proteins that regulate circulating lipid levels, making it relevant for their study.”

The team used tandem mass tag, or TMT, labeling proteomic and glycoproteomic approaches to look at proteins and their glycosylation patterns in plasma samples. They found that the N352S mutation primarily influences glycosylation patterns of plasma proteins without significantly altering the expression levels of most identified proteins, except the ones involved in the coagulation and immune response pathways.

“We are still in the process of fully understanding how the initial action leads to the final outcome,” Zhao said.

So, what does this mean for human health? The study highlights the potential of targeting glycosylation for treating heart diseases by regulating circulating lipid levels.

“While our findings are promising,” Zhao said, “it’s still too early to state that B4GALT1 could serve as a potential drug target, or that manipulating glycosylation could be a valid approach to treating atherosclerosis and cardiovascular disease.”

Zhao continued: “Currently, we are advancing our research through further validation studies using animal models and large-scale clinical sample analysis, aiming to confirm our initial findings and elucidate the underlying mechanisms, in collaboration with our partners. Our ultimate goal is to translate these findings into therapeutic value, but more research is needed before we can reach that point.”

Enjoy reading ASBMB Today?

Become a member to receive the print edition four times a year and the digital edition monthly.

Learn more
Nipuna Weerasinghe

Nipuna Weerasinghe holds a bachelor’s degree in chemistry from the University of Colombo, Sri Lanka, and a master’s degree in chemistry from the University of Arizona.

Get the latest from ASBMB Today

Enter your email address, and we’ll send you a weekly email with recent articles, interviews and more.

Latest in Science

Science highlights or most popular articles

From humble beginnings to unlocking lysosomal secrets
Award

From humble beginnings to unlocking lysosomal secrets

Feb. 20, 2026

Monther Abu–Remaileh will receive the ASBMB’s 2026 Walter A. Shaw Young Investigator Award in Lipid Research at the ASBMB Annual Meeting, March 7-10 in Washington, D.C.

Chemistry meets biology to thwart parasites
Award

Chemistry meets biology to thwart parasites

Feb. 19, 2026

Margaret Phillips will receive the Alice and C. C. Wang Award in Molecular Parasitology at the ASBMB Annual Meeting, March 7-10 in Washington, D.C.

ASBMB announces 2026 JBC/Tabor awardees
Award

ASBMB announces 2026 JBC/Tabor awardees

Feb. 18, 2026

The seven awardees are first authors of outstanding papers published in 2025 in the Journal of Biological Chemistry.

Missing lipid shrinks heart and lowers exercise capacity
Journal News

Missing lipid shrinks heart and lowers exercise capacity

Feb. 18, 2026

Researchers uncovered the essential role of PLAAT1 in maintaining heart cardiolipin, mitochondrial function and energy metabolism, linking this enzyme to exercise capacity and potential cardiovascular disease pathways.

Decoding how bacteria flip host’s molecular switches
Award

Decoding how bacteria flip host’s molecular switches

Feb. 17, 2026

Kim Orth will receive the Earl and Thressa Stadtman Distinguished Scientists Award at the ASBMB Annual Meeting, March 7–10, just outside of Washington, D.C.

Defining JNKs: Targets for drug discovery
Award

Defining JNKs: Targets for drug discovery

Feb. 12, 2026

Roger Davis will receive the Bert and Natalie Vallee Award in Biomedical Science at the ASBMB Annual Meeting, March 7–10, just outside of Washington, D.C.